Laser & Optoelectronics Progress, Volume. 61, Issue 18, 1837011(2024)
Ground-Based Cloud Image Segmentation Network Based on Improved MobileNetV2
Fig. 3. Receptive field of [2, 4, 8] dilation rate convolution kernel stack and receptive field of [1, 2, 6] dilation rate convolution kernel stack
Fig. 7. Prediction results of different methods. (a) Input image; (b) mask; (c) K-means; (d) Otsu; (e) U-ResNet; (f) DeepLabV3+; (g) CloudSegNet; (h) MACNN; (i) proposed method
Fig. 8. Comparison of all sky datasets. (a) Input; (b) mask; (c) U-ResNet; (d) DeepLabV3+; (e) CloudSegNet; (f) MACNN; (g) proposed method
|
|
|
|
Get Citation
Copy Citation Text
Hongkun Bu, Shuai Chang, Ye Gu, Chunyu Guo, Chengbang Song, Wei Xu, Lü Tianyu, Wei Zhao, Shoufeng Tong. Ground-Based Cloud Image Segmentation Network Based on Improved MobileNetV2[J]. Laser & Optoelectronics Progress, 2024, 61(18): 1837011
Category: Digital Image Processing
Received: Jan. 12, 2024
Accepted: Feb. 21, 2024
Published Online: Sep. 14, 2024
The Author Email: Shuai Chang (changshuai@cust.edu.cn)
CSTR:32186.14.LOP240505