Journal of Radiation Research and Radiation Processing, Volume. 41, Issue 1, 010101(2023)
Research progress of amidoxime uranium adsorption materials
[2] Ivanov A S, Parker B F, Zhang Z C et al. Siderophore-inspired chelator hijacks uranium from aqueous medium[J]. Nature Communications, 10, 819(2019).
[3] Lin K, Sun W Y, Feng L J et al. Kelp inspired bio-hydrogel with high antibiofouling activity and super-toughness for ultrafast uranium extraction from seawater[J]. Chemical Engineering Journal, 430, 133121(2022).
[4] Liatsou I, Pashalidis I, Nicolaides A. Triggering selective uranium separation from aqueous solutions by using salophen-modified biochar fibers[J]. Journal of Radioanalytical and Nuclear Chemistry, 318, 2199-2203(2018).
[5] Yao W, Wang X X, Liang Y et al. Synthesis of novel flower-like layered double oxides/carbon dots nanocomposites for U(VI) and 241Am(III) efficient removal: batch and EXAFS studies[J]. Chemical Engineering Journal, 332, 775-786(2018).
[6] Wang Z Y, Ma R C, Meng Q H et al. Constructing uranyl-specific nanofluidic channels for unipolar ionic transport to realize ultrafast uranium extraction[J]. Journal of the American Chemical Society, 143, 14523-14529(2021).
[7] Zhang Z B, Dong Z M, Wang X X et al. Synthesis of ultralight phosphorylated carbon aerogel for efficient removal of U(VI): batch and fixed-bed column studies[J]. Chemical Engineering Journal, 370, 1376-1387(2019).
[8] Szenknect S, Mesbah A, Descostes M et al. Uranium removal from mining water using Cu substituted hydroxyapatite[J]. Journal of Hazardous Materials, 392, 122501(2020).
[9] Amphlett J T M, Choi S, Parry S A et al. Insights on uranium uptake mechanisms by ion exchange resins with chelating functionalities: Chelation vs. anion exchange[J]. Chemical Engineering Journal, 392, 123712(2020).
[10] Shen J J, Schäfer A. Removal of fluoride and uranium by nanofiltration and reverse osmosis: a review[J]. Chemosphere, 117, 679-691(2014).
[11] Krawczyk-Bärsch E, Gerber U, Müller K et al. Multidisciplinary characterization of U(VI) sequestration by Acidovorax facilis for bioremediation purposes[J]. Journal of Hazardous Materials, 347, 233-241(2018).
[12] Kong L J, Su M H, Mai Z H et al. Removal of uranium from aqueous solution by two-dimensional electrosorption reactor[J]. Environmental Technology & Innovation, 8, 57-63(2017).
[13] Wannachod T, Wongsawa T, Ramakul P et al. The synergistic extraction of uranium ions from monazite leach solution via HFSLM and its mass transfer[J]. Journal of Industrial and Engineering Chemistry, 33, 246-254(2016).
[14] Meng J, Lin X Y, Li H N et al. Adsorption capacity of kelp-like electrospun nanofibers immobilized with bayberry tannin for uranium(VI) extraction from seawater[J]. RSC Advances, 9, 8091-8103(2019).
[15] Shi S, Qian Y X, Mei P P et al. Robust flexible poly(amidoxime) porous network membranes for highly efficient uranium extraction from seawater[J]. Nano Energy, 71, 104629(2020).
[16] Ruan Y, Zhang H M, Yu Z J et al. Phosphate enhanced uranium stable immobilization on biochar supported nano zero valent iron[J]. Journal of Hazardous Materials, 424, 127119(2022).
[17] Gu H Q, Ju P H, Liu Q et al. Constructing an amino-reinforced amidoxime swelling layer on a polyacrylonitrile surface for enhanced uranium adsorption from seawater[J]. Journal of Colloid and Interface Science, 610, 1015-1026(2022).
[18] Zhang W H, Han X, You J et al. Rapid and manual-shaking exfoliation of amidoximated cellulose nanofibrils for a large-capacity filtration capture of uranium[J]. Journal of Materials Chemistry A, 10, 7920-7927(2022).
[19] Xu X, Huang C, Wang Y J et al. Engineering biaxial stretching polyethylene membrane with poly(amidoxime)-nanoparticle and mesopores architecture for uranium extraction from seawater[J]. Chemical Engineering Journal, 430, 133159(2022).
[20] Cai Y W, Chen L, Yang S T et al. Rational synthesis of novel phosphorylated chitosan-carboxymethyl cellulose composite for highly effective decontamination of U(VI)[J]. ACS Sustainable Chemistry & Engineering, 7, 5393-5403(2019).
[21] Eloy F, Lenaers R. The chemistry of amidoximes and related compounds[J]. Chemical Reviews, 62, 155-183(1962).
[22] Egawa H, Harada H. Recovery of uranium from sea water by using chelating resins containing amidoxime groups[J]. Nippon Kagaku Kaishi, 958-959(1979).
[23] Das S, Wang Z Y, Brown S et al. Strategies toward the synthesis of advanced functional sorbent performance for uranium uptake from seawater[J]. Industrial & Engineering Chemistry Research, 60, 15037-15044(2021).
[24] Das S, Brown S, Mayes R T et al. Novel poly(imide dioxime) sorbents: development and testing for enhanced extraction of uranium from natural seawater[J]. Chemical Engineering Journal, 298, 125-135(2016).
[25] Tian G X, Teat S J, Zhang Z Y et al. Sequestering uranium from seawater: binding strength and modes of uranyl complexes with glutarimidedioxime[J]. Dalton Transactions, 41, 11579-11586(2012).
[26] Ley H, Ulrich M. Über salzbildung Bei oxyamidoximen. (über innere komplexsalze. XI)[J]. Berichte Der Deutschen Chemischen Gesellschaft, 47, 2938-2944(1914).
[27] Werner A, Buss H. Ueber benzhydroximsäurechlorid[J]. Berichte Der Deutschen Chemischen Gesellschaft, 27, 2193-2201(1894).
[28] Li B Y, Sun Q, Zhang Y M et al. Functionalized porous aromatic framework for efficient uranium adsorption from aqueous solutions[J]. ACS Applied Materials & Interfaces, 9, 12511-12517(2017).
[29] Aguila B, Sun Q, Cassady H et al. Design strategies to enhance amidoxime chelators for uranium recovery[J]. ACS Applied Materials & Interfaces, 11, 30919-30926(2019).
[30] Zhuang S T, Wang J L. Poly amidoxime functionalized carbon nanotube as an efficient adsorbent for removal of uranium from aqueous solution[J]. Journal of Molecular Liquids, 319, 114288(2020).
[31] Mei D C, Liu L J, Li H et al. Efficient uranium adsorbent with antimicrobial function constructed by grafting amidoxime groups on ZIF-90 via malononitrile intermediate[J]. Journal of Hazardous Materials, 422, 126872(2022).
[32] Xing Z, Hu J T, Wang M H et al. Properties and evaluation of amidoxime-based UHMWPE fibrous adsorbent for extraction of uranium from seawater[J]. Science China Chemistry, 56, 1504-1509(2013).
[33] Ao J X, Zhang H J, Xu X et al. A novel ion-imprinted amidoxime-functionalized UHMWPE fiber based on radiation-induced crosslinking for selective adsorption of uranium[J]. RSC Advances, 9, 28588-28597(2019).
[34] Xu L, Hu J T, Ma H J et al. Amidoxime-based adsorbents prepared by cografting acrylic acid with acrylonitrile onto HDPE fiber for the recovery of uranium from seawater[J]. Nuclear Science and Techniques, 28, 45(2017).
[35] Oyola Y, Janke C J, Dai S. Synthesis, development, and testing of high-surface-area polymer-based adsorbents for the selective recovery of uranium from seawater[J]. Industrial & Engineering Chemistry Research, 55, 4149-4160(2016).
[36] Liu X Y, Liu H Z, Ma H J et al. Adsorption of the uranyl ions on an amidoxime-based polyethylene nonwoven fabric prepared by preirradiation-induced emulsion graft polymerization[J]. Industrial & Engineering Chemistry Research, 51, 15089-15095(2012).
[37] Zhang M X, Gao Q H, Yang C G et al. Preparation of amidoxime-based nylon-66 fibers for removing uranium from low-concentration aqueous solutions and simulated nuclear industry effluents[J]. Industrial & Engineering Chemistry Research, 55, 10523-10532(2016).
[38] Wang F X, Song Y J, Liang S H et al. Polyamidoxime nanoparticles/polyvinyl alcohol composite chelating nanofibers prepared by centrifugal spinning for uranium extraction[J]. Reactive and Functional Polymers, 159, 104812(2021).
[39] Omichi H, Katakai A, Sugo T et al. A new type of amidoxime-group-containing adsorbent for the recovery of uranium from seawater[J]. Separation Science and Technology, 20, 163-178(1985).
[40] Xu X, Zhang H J, Ao J X et al. 3D hierarchical porous amidoxime fibers speed up uranium extraction from seawater[J]. Energy & Environmental Science, 12, 1979-1988(2019).
[41] Chi F T, Hu S, Xiong J et al. Adsorption behavior of uranium on polyvinyl alcohol-g-amidoxime: Physicochemical properties, kinetic and thermodynamic aspects[J]. Science China Chemistry, 56, 1495-1503(2013).
[42] Kim J, Tsouris C, Oyola Y et al. Uptake of uranium from seawater by amidoxime-based polymeric adsorbent: field experiments, modeling, and updated economic assessment[J]. Industrial & Engineering Chemistry Research, 53, 6076-6083(2014).
[43] Das S, Tsouris C, Zhang C et al. Enhancing uranium uptake by amidoxime adsorbent in seawater: an investigation for optimum alkaline conditioning parameters[J]. Industrial & Engineering Chemistry Research, 55, 4294-4302(2016).
[44] Kim J, Oyola Y, Tsouris C et al. Characterization of uranium uptake kinetics from seawater in batch and flow-through experiments[J]. Industrial & Engineering Chemistry Research, 52, 9433-9440(2013).
[45] Xu X, Yue Y R, Cai D et al. Aqueous solution blow spinning of seawater‐stable polyamidoxime nanofibers from water‐soluble precursor for uranium extraction from seawater[J]. Small Methods, 4, 2000558(2020).
[46] Zhuang S T, Cheng R, Kang M et al. Kinetic and equilibrium of U(VI) adsorption onto magnetic amidoxime-functionalized chitosan beads[J]. Journal of Cleaner Production, 188, 655-661(2018).
[47] Li N, Gao P, Chen H W et al. Amidoxime modified Fe3O4@TiO2 particles for antibacterial and efficient uranium extraction from seawater[J]. Chemosphere, 287, 132137(2022).
[48] Zhao S L, Feng T T, Feng L J et al. Rapid recovery of uranium with magnetic-single-molecular amidoxime adsorbent[J]. Separation and Purification Technology, 287, 120524(2022).
[49] Yu J Q, Zhang H S, Liu Q et al. A high-flux antibacterial poly(amidoxime)-polyacrylonitrile blend membrane for highly efficient uranium extraction from seawater[J]. Journal of Hazardous Materials, 440, 129735(2022).
[50] Wang D, Song J N, Wen J et al. Significantly enhanced uranium extraction from seawater with mass produced fully amidoximated nanofiber adsorbent[J]. Advanced Energy Materials, 8, 1802607(2018).
[51] Yuan Y H, Guo X, Feng L J et al. Charge balanced anti-adhesive polyacrylamidoxime hydrogel membrane for enhancing uranium extraction from seawater[J]. Chemical Engineering Journal, 421, 127878(2021).
[52] Yu R, Lu Y R, Zhang X S et al. Amidoxime-modified ultrathin polyethylene fibrous membrane for uranium extraction from seawater[J]. Desalination, 539, 115965(2022).
[53] Tafreshi O A, Mosanenzadeh S G, Karamikamkar S et al. A review on multifunctional aerogel fibers: processing, fabrication, functionalization, and applications[J]. Materials Today Chemistry, 23, 100736(2022).
[54] Shi S, Li B C, Qian Y X et al. A simple and universal strategy to construct robust and anti-biofouling amidoxime aerogels for enhanced uranium extraction from seawater[J]. Chemical Engineering Journal, 397, 125337(2020).
[55] Zhang Z B, Dong Z M, Wang X X et al. Ordered mesoporous polymer-carbon composites containing amidoxime groups for uranium removal from aqueous solutions[J]. Chemical Engineering Journal, 341, 208-217(2018).
[56] Sun Q, Aguila B, Perman J et al. Bio-inspired nano-traps for uranium extraction from seawater and recovery from nuclear waste[J]. Nature Communications, 9, 1644(2018).
[57] Yan B J, Ma C X, Gao J X et al. An ion-crosslinked supramolecular hydrogel for ultrahigh and fast uranium recovery from seawater[J]. Advanced Materials (Deerfield Beach, Fla), 32, e1906615(2020).
[58] Wang F H, Li H P, Liu Q et al. A graphene oxide/amidoxime hydrogel for enhanced uranium capture[J]. Scientific Reports, 6, 19367(2016).
[59] Ma C X, Gao J X, Wang D et al. Sunlight polymerization of poly(amidoxime) hydrogel membrane for enhanced uranium extraction from seawater[J]. Advanced Science, 6, 1900085(2019).
[60] Zhang C R, Cui W R, Niu C P et al. rGO-based covalent organic framework hydrogel for synergistically enhance uranium capture capacity through photothermal desalination[J]. Chemical Engineering Journal, 428, 131178(2022).
[61] Hazer O, Kartal S. Use of amidoximated hydrogel for removal and recovery of U(VI) ion from water samples[J]. Talanta, 82, 1974-1979(2010).
[62] Liu R R, Wen S X, Sun Y et al. A nanoclay enhanced Amidoxime-Functionalized Double-Network hydrogel for fast and massive uranium recovery from seawater[J]. Chemical Engineering Journal, 422, 130060(2021).
[63] Gao J X, Yuan Y H, Yu Q H et al. Bio-inspired antibacterial cellulose paper-poly(amidoxime) composite hydrogel for highly efficient uranium(VI) capture from seawater[J]. Chemical Communications (Cambridge, England), 56, 3935-3938(2020).
[64] Yang S S, Huang Y W, Huang G L et al. Preparation of amidoxime-functionalized biopolymer/graphene oxide gels and their application in selective adsorption separation of U(VI) from aqueous solution[J]. Journal of Radioanalytical and Nuclear Chemistry, 324, 847-855(2020).
[65] Bai X, Tang J, Li H et al. Self-Emulsifying air-in-water HIPEs-Templated construction of amidoxime functionalized and chain entanglement enhanced macroporous hydrogel for fast and selective uranium extraction[J]. Chemical Engineering Journal, 452, 138982(2023).
[66] Jiao G J, Ma J L, Zhang J Q et al. Porous and biofouling-resistant amidoxime-based hybrid hydrogel with excellent interfacial compatibility for high-performance recovery of uranium from seawater[J]. Separation and Purification Technology, 287, 120571(2022).
[67] Liu T, Xie Z J, Chen M W et al. Mussel-inspired dual-crosslinked polyamidoxime photothermal hydrogel with enhanced mechanical strength for highly efficient and selective uranium extraction from seawater[J]. Chemical Engineering Journal, 430, 133182(2022).
[68] Ahmad Z, Li Y, Yang J J et al. A membrane-supported bifunctional poly(amidoxime-ethyleneimine) network for enhanced uranium extraction from seawater and wastewater[J]. Journal of Hazardous Materials, 425, 127995(2022).
[69] Xue Y, Cao M, Gao J Z et al. Electroadsorption of uranium on amidoxime modified graphite felt[J]. Separation and Purification Technology, 255, 117753(2021).
[70] Liu X L, Xie Y H, Hao M J et al. Highly efficient electrocatalytic uranium extraction from seawater over an amidoxime-functionalized In-N-C catalyst[J]. Advanced Science, 9, e2201735(2022).
[71] Ahmad Z, Li Y, Ali S et al. Benignly-fabricated supramolecular poly(amidoxime)-alginate-poly(acrylic acid) beads synergistically enhance uranyl capture from seawater[J]. Chemical Engineering Journal, 441, 136076(2022).
[72] Xiao F, Cheng Y X, Zhou P C et al. Fabrication of novel carboxyl and amidoxime groups modified luffa fiber for highly efficient removal of uranium(VI) from uranium mine water[J]. Journal of Environmental Chemical Engineering, 9, 105681(2021).
[73] Kawai T, Saito K, Sugita K et al. Preparation of hydrophilic amidoxime fibers by cografting acrylonitrile and methacrylic acid from an optimized monomer composition[J]. Radiation Physics and Chemistry, 59, 405-411(2000).
[74] Kawai T, Saito K, Sugita K et al. Comparison of amidoxime adsorbents prepared by cografting methacrylic acid and 2-hydroxyethyl methacrylate with acrylonitrile onto polyethylene[J]. Industrial & Engineering Chemistry Research, 39, 2910-2915(2000).
[75] Oyola Y, Dai S. High surface-area amidoxime-based polymer fibers co-grafted with various acid monomers yielding increased adsorption capacity for the extraction of uranium from seawater[J]. Dalton Transactions, 45, 8824-8834(2016).
[76] Yu B X, Zhang L, Ye G et al. De novo synthesis of bifunctional conjugated microporous polymers for synergistic coordination mediated uranium entrapment[J]. Nano Research, 14, 788-796(2021).
[77] Wiechert A I, Liao W P, Hong E et al. Influence of hydrophilic groups and metal-ion adsorption on polymer-chain conformation of amidoxime-based uranium adsorbents[J]. Journal of Colloid and Interface Science, 524, 399-408(2018).
[78] Liu X Y, Xie S B, Wang G H et al. Fabrication of environmentally sensitive amidoxime hydrogel for extraction of uranium (VI) from an aqueous solution[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 611, 125813(2021).
[79] Ting C F, Jie X, Wei H J et al. Improvement in uranium adsorption properties of amidoxime-based adsorbent through cografting of amine group[J]. Journal of Dispersion Science and Technology, 34, 604-610(2013).
[80] Kawai T, Saito K, Sugita K et al. Comparison of amidoxime adsorbents prepared by cografting methacrylic acid and 2-hydroxyethyl methacrylate with acrylonitrile onto polyethylene[J]. Industrial & Engineering Chemistry Research, 39, 2910-2915(2000).
[81] Choi S H, Nho Y C. Adsorption of UO2+2 by polyethylene adsorbents with amidoxime, carboxyl, and amidoxime/carboxyl group[J]. Radiation Physics and Chemistry, 57, 187-193(2000).
[82] Li R, Pang L J, Ma H J et al. Optimization of molar content of amidoxime and acrylic acid in UHMWPE fibers for improvement of seawater uranium adsorption capacity[J]. Journal of Radioanalytical and Nuclear Chemistry, 311, 1771-1779(2017).
[83] Meng Y J, Wang Y D, Liu L J et al. MOF modified with copolymers containing carboxyl and amidoxime groups and high efficiency U(VI) extraction from seawater[J]. Separation and Purification Technology, 291, 120946(2022).
[84] Sun Y B, Shao D D, Chen C L et al. Highly efficient enrichment of radionuclides on graphene oxide-supported polyaniline[J]. Environmental Science & Technology, 47, 9904-9910(2013).
[85] Sun Y B, Yang S B, Chen Y et al. Adsorption and desorption of U(VI) on functionalized graphene oxides: a combined experimental and theoretical study[J]. Environmental Science & Technology, 49, 4255-4262(2015).
[86] Romanchuk A Y, Slesarev A S, Kalmykov S N et al. Graphene oxide for effective radionuclide removal[J]. Physical Chemistry Chemical Physics: PCCP, 15, 2321-2327(2013).
[87] Wang Y, Hu X W, Liu Y T et al. Assembly of three-dimensional ultralight poly(amidoxime)/graphene oxide nanoribbons aerogel for efficient removal of uranium(VI) from water samples[J]. Science of the Total Environment, 765, 142686(2021).
[88] Bolotin D S, Bokach N A, Kukushkin V Y. Coordination chemistry and metal-involving reactions of amidoximes: relevance to the chemistry of oximes and oxime ligands[J]. Coordination Chemistry Reviews, 313, 62-93(2016).
[89] Parker B F, Zhang Z, Rao L et al. An overview and recent progress in the chemistry of uranium extraction from seawater[J]. Dalton Transactions, 47, 639-644(2018).
[90] Vukovic S, Watson L A, Kang S O et al. How amidoximate binds the uranyl cation[J]. Inorganic Chemistry, 51, 3855-3859(2012).
[91] Stemper J, Tuo W, Mazarío E et al. Synthesis of bis(amidoxime)s and evaluation of their properties as uranyl-complexing agents[J]. Tetrahedron, 74, 2641-2649(2018).
[92] Guo X J, Wang Y X, Li C et al. Optimum complexation of uranyl with amidoxime in aqueous solution under different pH levels: density functional theory calculations[J]. Molecular Physics, 113, 1327-1336(2015).
[93] Barber P S, Kelley S P, Rogers R D. Highly selective extraction of the uranyl ion with hydrophobic amidoxime-functionalized ionic liquidsvia η2 coordination[J]. RSC Advances, 2, 8526-8530(2012).
[94] Zhang L J, Su J, Yang S T et al. Extended X-ray absorption fine structure and density functional theory studies on the complexation mechanism of amidoximate ligand to uranyl carbonate[J]. Industrial & Engineering Chemistry Research, 55, 4224-4230(2016).
[95] Abney C W, Liu S B, Lin W B. Tuning amidoximate to enhance uranyl binding: a density functional theory study[J]. The Journal of Physical Chemistry A, 117, 11558-11565(2013).
Get Citation
Copy Citation Text
Jianwei ZHANG, Bo TIAN, Jinfeng LI, Zhigang LI, Nan ZHANG, Tuo LI, Zhixin LIU, Yuanjie SUN, Hongtao ZHAO. Research progress of amidoxime uranium adsorption materials[J]. Journal of Radiation Research and Radiation Processing, 2023, 41(1): 010101
Category: Research Articles
Received: Sep. 23, 2022
Accepted: Nov. 14, 2022
Published Online: Mar. 6, 2023
The Author Email: