Chinese Journal of Lasers, Volume. 47, Issue 7, 710001(2020)
Hyperspectral Remote Sensing Image Classification Based on Local Reconstruction Fisher Analysis
Fig. 2. Pavia University hyperspectral image. (a) False-color image; (b) ground-truth map
Fig. 4. Overall accuracy of LRFA at different parameters (k and kp) in Pavia University dataset
Fig. 5. Overall accuracy of each algorithm at different dimensions in Pavia University dataset
Fig. 6. Classification maps of each algorithm on Pavia University dataset. (a) Ground-truth map; (b) RAW(OA:78.95%); (c) PCA(OA:78.98%); (d) LPP(OA:80.55%); (e) NPE(OA:80.98%); (f) LDA(OA:76.50%); (g) MMC(OA:75.11%); (h) MFA(OA:82.62%); (i) LGSFA(OA:78.23%); (j) LRFA(OA:86.07%)
Fig. 7. Overall accuracy of LRFA at different parameters (k and kp) in Urban dataset
Fig. 9. Classification maps of each algorithm on Urban dataset. (a) Ground-truth image; (b) RAW(OA:80.86%); (c) PCA(OA:80.79%); (d) LPP(OA:80.66%); (e) NPE(OA:81.89%); (f) LDA(OA:82.60%); (g) MMC(OA: 81.40%); (h) MFA(OA:82.32%); (i) LGSFA(OA:82.50%); (j) LRFA(OA:83.77%)
Fig. 10. Two-dimensional embedding distribution of each algorithm on Pavia University dataset. (a) PCA; (b) LPP; (c) NPE; (d) LDA; (e) MMC; (f) MFA; (g) LGSFA; (h) LRFA
|
|
|
|
Get Citation
Copy Citation Text
Liu Jiamin, Yang Song, Huang Hong. Hyperspectral Remote Sensing Image Classification Based on Local Reconstruction Fisher Analysis[J]. Chinese Journal of Lasers, 2020, 47(7): 710001
Category: remote sensing and sensor
Received: Dec. 23, 2019
Accepted: --
Published Online: Jul. 10, 2020
The Author Email: