Chinese Journal of Lasers, Volume. 47, Issue 7, 710001(2020)

Hyperspectral Remote Sensing Image Classification Based on Local Reconstruction Fisher Analysis

Liu Jiamin, Yang Song, and Huang Hong
Author Affiliations
  • Key Laboratory of Optoelectronic Technique System of the Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
  • show less
    Figures & Tables(14)
    Flowchart of the proposed LRFA method
    Pavia University hyperspectral image. (a) False-color image; (b) ground-truth map
    Urban hyperspectral image. (a) False-color image; (b) ground-truth map
    Overall accuracy of LRFA at different parameters (k and kp) in Pavia University dataset
    Overall accuracy of each algorithm at different dimensions in Pavia University dataset
    Classification maps of each algorithm on Pavia University dataset. (a) Ground-truth map; (b) RAW(OA:78.95%); (c) PCA(OA:78.98%); (d) LPP(OA:80.55%); (e) NPE(OA:80.98%); (f) LDA(OA:76.50%); (g) MMC(OA:75.11%); (h) MFA(OA:82.62%); (i) LGSFA(OA:78.23%); (j) LRFA(OA:86.07%)
    Overall accuracy of LRFA at different parameters (k and kp) in Urban dataset
    Overall accuracy of LRFA at different dimensions in Urban dataset
    Classification maps of each algorithm on Urban dataset. (a) Ground-truth image; (b) RAW(OA:80.86%); (c) PCA(OA:80.79%); (d) LPP(OA:80.66%); (e) NPE(OA:81.89%); (f) LDA(OA:82.60%); (g) MMC(OA: 81.40%); (h) MFA(OA:82.32%); (i) LGSFA(OA:82.50%); (j) LRFA(OA:83.77%)
    Two-dimensional embedding distribution of each algorithm on Pavia University dataset. (a) PCA; (b) LPP; (c) NPE; (d) LDA; (e) MMC; (f) MFA; (g) LGSFA; (h) LRFA
    • Table 1. Classification results of each algorithm at different training sample sizes in Pavia University dataset

      View table

      Table 1. Classification results of each algorithm at different training sample sizes in Pavia University dataset

      Algorithm(OA±std) /%Kappa
      20 samples40 samples60 samples100 samples200 samples
      RAW67.70±2.180.59771.62±1.350.64174.35±0.940.67376.28±1.020.69679.01±0.710.728
      PCA67.68±2.170.59771.59±1.350.64174.33±0.940.67376.28±1.010.69678.93±0.690.727
      LPP69.41±2.560.61873.64±0.960.66676.53±0.950.70078.31±1.280.72281.82±0.510.763
      NPE69.69±2.910.62173.57±0.940.66576.60±1.090.70179.63±1.280.73782.63±0.790.773
      LDA60.25±2.010.50471.58±1.790.64075.59±1.670.68779.28±1.000.73282.94±1.070.776
      MMC66.32±2.190.58169.11±1.430.61270.76±0.940.63172.22±0.910.64774.05±0.870.668
      MFA74.76±3.120.68078.79±1.840.72881.52±1.230.76183.48±1.740.78686.36±0.900.821
      LGSFA[20]66.24±2.010.57573.46±2.100.66276.08±1.810.69479.87±1.690.73982.36±1.220.769
      LRFA75.69±3.320.69180.25±1.400.74582.18±1.110.76984.55±1.520.79886.80±0.550.826
    • Table 2. Classification performance of each algorithm on class samples in Pavia University dataset

      View table

      Table 2. Classification performance of each algorithm on class samples in Pavia University dataset

      ClassClassification accuracy /%
      RAWPCALPPNPELDAMMCMFALGSFA[20]LRFA
      179.9480.0981.0482.0181.6583.5384.3677.7684.63
      291.4591.4693.0192.9289.8184.2198.2898.0997.77
      345.5245.4350.6765.1652.9440.6642.6936.2859.72
      466.3766.3468.0870.3373.6969.1180.1580.5179.92
      599.0299.0299.3299.6299.5599.1099.5599.6299.55
      644.3344.3346.3752.8051.3444.4342.1635.7760.80
      782.5482.6985.5064.1625.4462.1158.9236.6780.71
      876.6376.6577.1569.8260.8870.0478.3865.6077.53
      999.7999.7999.6898.2973.1399.4799.0478.6899.79
      OA /%78.9578.9880.5580.9876.5075.1182.6278.2386.07
      AA /%76.1876.2077.8777.2467.6072.5275.9567.6782.27
      Kappa0.7150.7150.7360.7430.6850.6670.7620.7010.811
      Time /s-0.0320.0890.1190.0300.1460.3390.5900.414
    • Table 3. Classification results of each algorithm at different training sample sizes in Urban dataset

      View table

      Table 3. Classification results of each algorithm at different training sample sizes in Urban dataset

      Algorithm(OA±std) /%Kappa
      20 samples40 samples60 samples100 samples200 samples
      RAW71.61±3.220.5774.81±1.70.61175.34±1.290.61875.96±1.060.62776.78±0.990.638
      PCA71.6±3.220.5774.8±1.690.61175.35±1.270.61875.95±1.040.62776.79±0.970.638
      LPP71.97±3.160.57574.23±2.120.60374.85±1.120.61275.08±1.130.61576.23±1.190.63
      NPE71.04±3.420.56174.69±2.20.61175.7±1.170.62576.08±1.030.6377.78±1.170.653
      LDA58.77±3.940.41468.24±2.570.52976.76±0.970.6478.75±0.970.66779.14±0.790.672
      MMC70.61±1.870.55371.45±3.40.56771.87±2.180.5772.51±1.540.57772.7±1.440.582
      MFA74.77±1.670.61775.4±1.410.62176.26±2.210.63576.82±1.650.64277.83±1.180.655
      LGSFA[20]74.82±2.60.61276.61±1.640.64078.3±1.190.66278.54±1.140.66479.28±1.080.674
      LRFA76.64±2.670.6478.12±1.710.6678.82±1.240.6779.28±0.990.67680.00±0.780.685
    • Table 4. Classification results of each algorithm on class samples in Urban dataset

      View table

      Table 4. Classification results of each algorithm on class samples in Urban dataset

      ClassClassification accuracy /%
      RAWPCALPPNPELDAMMCMFALGSFA[20]LRFA
      176.8576.9576.8777.4880.0077.2475.0576.4680.70
      243.2843.0039.7148.4943.1439.9240.9546.6447.46
      381.7481.7183.5290.0982.6581.1488.3183.7490.03
      479.8179.8183.3285.9675.0281.3068.8785.4890.48
      587.7487.6287.7288.3589.2288.4290.1392.3790.89
      666.3966.3064.9466.1569.0867.1867.7659.3965.56
      OA /%80.8680.7980.6681.8982.6081.4082.3282.5083.77
      AA /%72.6372.5772.6876.0873.1872.5371.8474.0177.52
      Kappa0.6770.6750.6730.6940.7060.6860.6980.6950.723
      Time /s-0.0630.1190.2210.0470.5590.9751.4591.194
    Tools

    Get Citation

    Copy Citation Text

    Liu Jiamin, Yang Song, Huang Hong. Hyperspectral Remote Sensing Image Classification Based on Local Reconstruction Fisher Analysis[J]. Chinese Journal of Lasers, 2020, 47(7): 710001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: remote sensing and sensor

    Received: Dec. 23, 2019

    Accepted: --

    Published Online: Jul. 10, 2020

    The Author Email:

    DOI:10.3788/CJL202047.0710001

    Topics