Optics and Precision Engineering, Volume. 32, Issue 19, 2861(2024)
Fiber-optic navigation of approach attitude for transnasal flexible surgical robot
[1] ORLANDI R R, KINGDOM T T, SMITH T L et al. International consensus statement on allergy and rhinology: rhinosinusitis 2021[J]. International Forum of Allergy & Rhinology, 11, 213-739(2021).
[2] LIM C T, KORBONITS M K. Update on the clinicopathology of pituitary adenomas[J]. Endocrine Practice, 24, 473-488(2018).
[3] KENNEDY D W. Endoscopic Sinus Surgery[M]. Rhinosinusitis, 1-14(2008).
[4] HE Y CH. Research on Mechanism Design and Safety Control of Assisted Robot for Nasal Endoscopic Surgery[D](2019).
何玉成. 鼻内镜手术辅助机器人机构设计与安全控制研究[D](2019).
[5] SUN G K, HE Y L, YU Y et al. Fiber-optic navigation technology for continuum surgical robots: status and future perspectives[J]. Journal of Mechanical Engineering, 59, 1-18(2023).
孙广开, 何彦霖, 于洋. 连续体手术机器人光纤导航技术现状和展望[J]. 机械工程学报, 59, 1-18(2023).
[6] SHU X P, CHEN Q, XIE L. A novel robotic system for flexible ureteroscopy[J]. The International Journal of Medical Robotics+Computer Assisted Surgery, 17, 1-11(2021).
[7] HWANG M, KWON D S. K-FLEX: a flexible robotic platform for scar-free endoscopic surgery[J]. The International Journal of Medical Robotics + Computer Assisted Surgery, 16(2020).
[8] KAOUK J H, HABER G P, AUTORINO R et al. A novel robotic system for single-port urologic surgery: first clinical investigation[J]. European Urology, 66, 1033-1043(2014).
[9] CAO Y F, SHI Y X, HONG W Z et al. Continuum robots for endoscopic sinus surgery: recent advances, challenges, and prospects[J]. The International Journal of Medical Robotics + Computer Assisted Surgery, 19(2023).
[10] GILBERT H B, NEIMAT J, WEBSTER R J. Concentric tube robots as steerable needles: achieving follow-the-leader deployment[J]. IEEE Transactions on Robotics, 31, 246-258(2015).
[11] BURGNER J, RUCKER D C, GILBERT H B et al. A telerobotic system for transnasal surgery[J]. IEEE/ASME Transactions on Mechatronics, 19, 996-1006(2013).
[12] BRUNS T L, REMIREZ A A, EMERSON M A et al. A modular, multi-arm concentric tube robot system with application to transnasal surgery for orbital tumors[J]. The International Journal of Robotics Research, 40, 521-533(2021).
[13] LEGRAND J, OURAK M, VAN GERVEN L et al. A miniature robotic steerable endoscope for maxillary sinus surgery called PliENT[J]. Scientific Reports, 12, 2299(2022).
[14] KIM J, KWON S, MOON Y et al. Cable-movable rolling joint to expand workspace under high external load in a hyper-redundant manipulator[J]. IEEE/ASME Transactions on Mechatronics, 27, 501-512(2021).
[15] KONG Y X, WANG J L, ZHANG N et al. Dexterity analysis and motion optimization of
[16] ROSEN J, SEKHAR L, GLOZMAN D et al. Roboscope: a flexible and bendable surgical robot for single portal Minimally Invasive Surgery[C], 2364-2370(2017).
[17] HONG W Z, XIE L, LIU J H et al. Development of a novel continuum robotic system for maxillary sinus surgery[J]. ASME Transactions on Mechatronics, 23, 1226-1237(2018).
[18] LI T L, ZHAO Z B, GUO J X et al. Wavelength-phase hybrid coded catheter tip three-axis force optical fiber sensor with uncertain environment self-adaptivity[J]. ASME Transactions on Mechatronics, 1-12(2024).
[19] LI T L, QIU L, REN H L. Distributed curvature sensing and shape reconstruction for soft manipulators with irregular cross sections based on parallel dual-FBG arrays[J]. ASME Transactions on Mechatronics, 25, 406-417(2020).
[20] DEATON N J, SHEFT M, DESAI J P. Towards FBG-based shape sensing and sensor drift for a steerable needle[J]. ASME Transactions on Mechatronics, 28, 3041-3052(2023).
[21] 李天梁, 宋珍珍, 陈发银. 光纤光栅与人工智能融合的形状自感知穿刺针[J]. 光学 精密工程, 31, 160-167(2023).
LI T L, SONG ZH ZH, CHEN F Y et al. Fiber Bragg grating and artificial intelligence fusion for shape self-sensing puncture needle[J]. Opt. Precision Eng., 31, 160-167(2023).
[22] KHAN F, DENASI A, BARRERA D et al. Multi-core optical fibers with Bragg gratings as shape sensor for flexible medical instruments[J]. IEEE Sensors Journal, 19, 5878-5884(2019).
[23] LU Y, LU B, LI B et al. Robust three-dimensional shape sensing for flexible endoscopic surgery using multi-core FBG sensors[J]. IEEE Robotics and Automation Letters, 6, 4835-4842(2021).
[24] SHI C Y, LUO X B, QI P et al. Shape sensing techniques for continuum robots in minimally invasive surgery: a survey[J]. IEEE Transactions on Bio-Medical Engineering, 64, 1665-1678(2017).
[25] LIU H, FARVARDIN A, GRUPP R et al. Shape tracking of a dexterous continuum manipulator utilizing two large deflection shape sensors[J]. IEEE Sensors Journal, 15, 5494-5503(2015).
[26] KHAN F, DONDER A, GALVAN S et al. Pose measurement of flexible medical instruments using fiber Bragg gratings in multi-core fiber[J]. IEEE Sensors Journal, 20, 10955-10962(2020).
[27] AL-AHMAD O, OURAK M, VAN ROOSBROECK J et al. Improved FBG-based shape sensing methods for vascular catheterization treatment[J]. IEEE Robotics and Automation Letters, 1(2020).
[28] CAO Y F, LIU Z F, YU H L et al. Spatial shape sensing of a multisection continuum robot with integrated DTG sensor for maxillary sinus surgery[J]. ASME Transactions on Mechatronics, 28, 715-725(2023).
[29] SEFATI S, GAO C, IORDACHITA I et al. Data-driven shape sensing of a surgical continuum manipulator using an uncalibrated fiber Bragg grating sensor[J]. IEEE Sensors Journal, 21, 3066-3076(2021).
[30] MOORE J P, ROGGE M D. Shape sensing using multi-core fiber optic cable and parametric curve solutions[J]. Optics Express, 20, 2967-2973(2012).
[31] MANAVI ROODSARI S, HUCK-HORVATH A, CATTIN P C. Shape sensing of optical fiber Bragg gratings based on deep learning[J]. Machine Learning: Science and Technology, 4(2023).
[32] LI T L, HUANG P A, WANG S S et al. A six-axis FBG force/moment sensor with nonlinear decoupling and fault tolerance for laparoscopic instruments[J]. IEEE Transactions on Industrial Electronics, 71, 13384-13394(2024).
Get Citation
Copy Citation Text
Tianliang LI, Yongwen ZHU, Jiajun LI, Jun WANG, Wei MENG, Yuegang TAN. Fiber-optic navigation of approach attitude for transnasal flexible surgical robot[J]. Optics and Precision Engineering, 2024, 32(19): 2861
Category:
Received: Jun. 5, 2024
Accepted: --
Published Online: Jan. 9, 2025
The Author Email: