APPLIED LASER, Volume. 42, Issue 1, 21(2022)

Influence of Powder Layer Structure on Laser Absorption of Ti6Al4V during Selective Laser Melting

Hu Xuelan*, Wang Zhilong, Wang Mengyuan, and Wang Yaru
Author Affiliations
  • [in Chinese]
  • show less
    References(24)

    [1] [1] YIN J, PENG G Y, CHEN C P, et al. Thermal behavior and grain growth orientation during selective laser melting of Ti6Al4V alloy[J]. Journal of Materials Processing Technology, 2018, 260: 57-65.

    [2] [2] DUTTA B, H. FROES F. Additive manufacturing of titanium alloys[M]. Oxford: Butterworth-Heinemann, 2016: 1-11.

    [3] [3] CHUA C K, LEONG K F. 3D Printing and additive manufacturing principles and applications[M]. CHEN J M, CHEN X J, Transl. 4th ed. Beijing: National Defense Industry Press, 2017: 19-30.

    [4] [4] GU D D, ZHANG H M, CHEN H Y, et al. Laser additive manufacturing of high-performance metallic aerospace components[J]. Chinese Journal of Lasers, 2020, 47(5): 0500002.

    [5] [5] MA Y. The microstructuretransformationof selective laser melting processed TC4 at different heights[J]. Applied Laser, 2020, 40(5): 790-794.

    [8] [8] YANG Y, GU D D, DAI D H, et al. Laser energy absorption behavior of powder particles using ray tracing method during selective laser melting additive manufacturing of aluminum alloy[J]. Materials & Design, 2018, 143: 12-19.

    [9] [9] BOLEY C D, KHAIRALLAH S A, RUBENCHIK A M. Calculation of laser absorption by metal powders in additive manufacturing[J].Applied Optics, 2015, 54(9): 2477-2482.

    [10] [10] BOLEY C D, MITCHELL S C, RUBENCHIK A M, et al. Metal powder absorptivity: modeling and experiment[J]. Applied Optics, 2016, 55(23): 6496-6500.

    [11] [11] ZHANG D Y, WANG W D, GUO Y W, et al. Numerical simulation in the absorption behavior of Ti6Al4V powder materials to laser energy during SLM[J]. Journal of Materials Processing Technology, 2019, 268: 25-36.

    [12] [12] ZHANG J Y, GU D D, YANG Y, et al. Influence of particle size on laser absorption and scanning track formation mechanisms of pure tungsten powder during selective laser melting[J]. Engineering, 2019, 5(4): 736-745.

    [13] [13] LEITZ K H, GROHS C, SINGER P, et al. Fundamental analysis of the influence of powder characteristics in selective laser melting of molybdenum based on a multi-physical simulation model[J]. International Journal of Refractory Metals and Hard Materials, 2018, 72: 1-8.

    [14] [14] TRAN H C, LO Y L. Heat transfer simulations of selective laser melting process based on volumetric heat source with powder size consideration[J]. Journal of Materials Processing Technology, 2018, 255: 411-425.

    [15] [15] MOSER D, PANNALA S, MURTHY J. Computation of effective radiative properties of powders for selective laser sintering simulations[J]. JOM, 2015, 67(5): 1194-1202.

    [16] [16] TRAN H C, LO Y L, HUANG M H. Analysis of scattering and absorption characteristics of metal powder layer for selective laser sintering[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(4): 1807-1817.

    [17] [17] YAN S P, ZHANG A F, LIANG S D, et al. Measurement of laser light absorptivity of commonly used metals in laser additive manufacturing technique[J]. Aeronautical Manufacturing Technology, 2017, 60(17): 97-100.

    [18] [18] TOLOCHKO N K, KHLOPKOV Y V, MOZZHAROV S E, et al. Absorptance of powder materials suitable for laser sintering[J]. Rapid Prototyping Journal, 2000, 6(3): 155-161.

    [19] [19] RUBENCHIK A, WU S, MITCHELL S, et al. Direct measurements of temperature-dependent laser absorptivity of metal powders[J]. Applied Optics, 2015, 54(24): 7230-7233.

    [20] [20] GUSAROV A V, LAOUI T, FROYEN L, et al. Contact thermal conductivity of a powder bed in selective laser sintering[J]. International Journal of Heat and Mass Transfer, 2003, 46(6): 1103-1109.

    [21] [21] BORN M, WOLF E, HECHT E. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light[J]. Physics Today, 2000, 53(10): 77-78.

    [22] [22] JOHNSON P, CHRISTY R. Optical constants of transition metals: Ti, V, Cr,Mn, Fe, Co, Ni, and Pd[J]. Physical Review B, 1974, 9(12): 5056-5070.

    [23] [23] BORN M. Principles of optics-electromagnetic theory of propagation, interference and diffraction of light[M].7th Ed. England: Cambridge University Press, 1999.

    [24] [24] GUSAROV A V, YADROITSEV I, BERTRAND P, et al. Model of radiation and heat transfer in laser-powder interaction zone at selective laser melting[J]. Journal of Heat Transfer, 2009, 131(7): 072101.

    CLP Journals

    [1] Shi Hao, Gao Aizhen, Liu Shihua, Sun Jie. Investigation on Properties and Techniques of Laser Directed Energy Deposition Copper Alloy CuSn15 Upon Ironed Blast Blower Impeller[J]. APPLIED LASER, 2023, 43(11): 17

    Tools

    Get Citation

    Copy Citation Text

    Hu Xuelan, Wang Zhilong, Wang Mengyuan, Wang Yaru. Influence of Powder Layer Structure on Laser Absorption of Ti6Al4V during Selective Laser Melting[J]. APPLIED LASER, 2022, 42(1): 21

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Mar. 8, 2021

    Accepted: --

    Published Online: Aug. 5, 2022

    The Author Email: Hu Xuelan (huxlemma@163.com)

    DOI:10.14128/j.cnki.al.20224201.021

    Topics