Laser Technology, Volume. 49, Issue 2, 195(2025)
Research progress on novel distributed Raman amplification technologies
[2] [2] SOBHANAN A, ANTHUR A, O'DUILL S,et al. Semiconductor optical amplifiers: Recent advances and applications[J]. Advances in Optics and Photonics, 2022, 14(3): 571-651.
[3] [3] ISLAM M N. Raman amplifiers for telecommunications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2002, 8(3): 548-559.
[6] [6] SIRLETO L, FERRARA M A. Fiber amplifiers and fiber lasers based on stimulated Raman scattering: A review[J]. Micromachines, 2020, 11(3): 247.
[8] [8] LI J, DU J, MA L,et al. Second-order few-mode Raman amplifier for mode-division multiplexed optical communication systems[J]. Optics Express, 2017, 25(2): 810-820.
[9] [9] FARALLI S, BOLOGNINI G, SACCHI G,et al. Bidirectional higher order cascaded Raman amplification benefits for 10 Gb/s WDM unrepeated transmission systems[J]. Journal of Lightwave Technology, 2005, 23(8): 2427-2433.
[10] [10] ANIA-CASTAN J D, ELLINGHAM T J, IBBOTSON R,et al. Ultralong Raman fiber lasers as virtually lossless optical media[J]. Physical Review Letters, 2006, 96(2): 023902.
[11] [11] ANIA-CASTAN J D, TURITSYN S K. Unrepeatered transmission through ultra-long fiber laser cavities[J]. Optics Communications, 2008, 281(23): 5760-5763.
[12] [12] ANIA-CASTAN J D. Quasi-lossless transmission using second-order Raman amplification and fibre Bragg gratings[J]. Optics Express, 2004, 12(19): 4372-4377.
[13] [13] ANIA-CASTAN J D, KARALEKAS V, HARPER P,et al. Simultaneous spatial and spectral transparency in ultralong fiber lasers[J]. Physical Review Letters, 2008, 101(12): 123903.
[14] [14] JIA X H, RAO Y J, WANG Z N,et al. Detailed theoretical investigation on improved quasi-lossless transmission using third-order Raman amplification based on ultralong fiber lasers[J]. Journal of the Optical Society of America, 2012, B29(4): 847-854.
[15] [15] WU H, HAN B, RAO Y J. 100km quasi-lossless fiber-optic transmission with a novel cascaded random Raman fiber laser[C]//Optical Fiber Communication Conference. London, UK: Optica Publishing Group, 2018: W2A.8.
[16] [16] EL-TAHER A, KOTLICKI O, HARPER P,et al. Secure key distribution over a 500 km long link using a Raman ultra-long fiber laser[J]. Laser & Photonics Reviews, 2014, 8(3): 436-442.
[17] [17] ALCN-CAMAS M, ANIA-CASTAN J D. RIN transfer in 2nd-order distributed amplification with ultralong fiber lasers[J]. Optics Express, 2010, 18(23): 23569-23575.
[18] [18] RIZZELLI G, IQBAL M A, GALLAZZI F,et al. Impact of input FBG reflectivity and forward pump power on RIN transfer in ultralong Raman laser amplifiers[J]. Optics Express, 2016, 24(25): 29170-29175.
[19] [19] GALLAZZI F, RIZZELLI G, IQBAL M A,et al. Performance optimization in ultra-long Raman laser amplified 10× 30 Gbaud DP-QPSK transmission: Balancing RIN and ASE noise[J]. Optics Express, 2017, 25(18): 21454-21459.
[20] [20] CHURKIN D V, SUGAVANAM S, VATNIK I D,et al. Recent advances in fundamentals and applications of random fiber lasers[J]. Advances in Optics and Photonics, 2015, 7(3): 516-569.
[21] [21] JIA X H, RAO Y J, PENG F,et al. Random-lasing-based distributed fiber-optic amplification[J]. Optics Express, 2013, 21(5): 6572-6577.
[22] [22] TAN M, ROSA P, LE S T,et al. Transmission performance improvement using random DFB laser based Raman amplification and bidirectional second-order pumping[J]. Optics Express, 2016, 24(3): 2215-2221.
[23] [23] ROSA P, TAN M, LE S T,et al. Unrepeatered DP-QPSK transmission over 352.8 km SMF using random DFB fiber laser amplification[J]. IEEE Photonics Technology Letters, 2015, 27(11): 1189-1192.
[24] [24] MARTINS H F, MARTIN-LOPEZ S, CORREDERA P,et al. Distributed vibration sensing over 125 km with enhanced SNR using phi-OTDR over a URFL cavity[J]. Journal of Lightwave Technology, 2015, 33(12): 2628-2632.
[25] [25] FU Y, ZHU R, HAN B,et al. 175 km repeaterless BOTDA with hybrid high-order random fiber laser amplification[J]. Journal of Lightwave Technology, 2019, 37(18): 4680-4686.
[26] [26] HAN B, WU H. Ultra-long chaotic FBG sensing with high-order random fiber lasing amplification[J]. Optics Letters, 2023, 48(5): 1280-1283.
[27] [27] KEITA K, DELAYE P, FREY R,et al. Relative intensity noise transfer of large-bandwidth pump lasers in Raman fiber amplifiers[J]. Journal of the Optical Society of America, 2006, B23(12): 2479-2485.
[28] [28] MORIMOTO M, OGOSHI H, YOSHIDA J,et al. Co-propagating dual-order distributed Raman amplifier utilizing incoherent pumping[J]. IEEE Photonics Technology Letters, 2017, 29(7): 567-570.
[29] [29] IQBAL M A, TAN M, HARPER P. Enhanced transmission performance using backward-propagated broadband ASE pump[J]. IEEE Photonics Technology Letters, 2018, 30(9): 865-868.
[30] [30] TAENGNOI N, BOTTRILL K R H, HONG Y,et al. Ultra-long-span U-band transmission enabled by incoherently pumped raman amplification[J]. Journal of Lightwave Technology, 2023, 41(12): 3767-373.
[31] [31] TAN M, ROSA P, LE S T,et al. RIN mitigation and transmission performance enhancement with forward broadband pump[J]. IEEE Photonics Technology Letters, 2017, 30(3): 254-257.
[32] [32] IQBAL M A, TAN M, HARPER P. On the mitigation of RIN transfer and transmission performance improvement in bidirectional distributed Raman amplifiers[J]. Journal of Lightwave Technology, 2018, 36(13): 2611-2618.
[33] [33] DUTTA A, AKASAKA Y, HUI R. System performance analysis of distributed Raman amplification with dual-order forward pumping[J]. Journal of Lightwave Technology, 2024, 42(8): 2799-2808.
[34] [34] ZIBAR D, BRUSIN A M R, de MOURA U C,et al. Inverse system design using machine learning: The Raman amplifier case[J]. Journal of Lightwave Technology, 2020, 38(4): 736-753.
[35] [35] de MOURA U C, da ROS F, BRUSIN A M R,et al. Experimental characterization of Raman amplifier optimization through inverse system design[J]. Journal of Lightwave Technology, 2021, 39(4): 1162-1170.
[36] [36] de MOURA U C, da ROS F, BRUSIN A M R,et al. Experimental demonstration of arbitrary Raman gain-profile designs using machine learning[C]//Optical Fiber Communication Conference. London, UK: Optica Publishing Group, 2020: T4B.2.
[37] [37] BRUSIN A M R, de MOURA U C, CURRI V,et al. Introducing load aware neural networks for accurate predictions of Raman amplifiers[J]. Journal of Lightwave Technology, 2020, 38(23): 6481-6491.
[38] [38] de MOURA U C, BRUSIN A M R, CARENA A,et al. Simultaneous gain profile design and noise figure prediction for Raman amplifiers using machine learning[J]. Optics Letters, 2021, 46(5): 1157-1160.
[39] [39] SOLTANI M, da ROS F, CARENA A,et al. Spectral and spatial power evolution design with machine learning-enabled Raman amplification[J]. Journal of Lightwave Technology, 2022, 40(12): 3546-3556.
[40] [40] BORRACCINI G, STRAULLU S, PICIACCIA S,et al. Cognitive Raman amplifier control using an evolutionary optimization strategy[J]. IEEE Photonics Technology Letters, 2022, 34(4): 223-226.
[41] [41] CHEN Y, DU J, HUANG Y,et al. Intelligent gain flattening in wavelength and space domain for FMF Raman amplification by machine learning based inverse design[J]. Optics Express, 2020, 28(8): 11911-11920.
[42] [42] MARCON G, GALTAROSSA A, PALMIERI L,et al. Model-aware deep learning method for Raman amplification in few-mode fibers[J]. Journal of Lightwave Technology, 2021, 39(5): 1371-1380.
Get Citation
Copy Citation Text
LI Xiaolin. Research progress on novel distributed Raman amplification technologies[J]. Laser Technology, 2025, 49(2): 195
Category:
Received: Feb. 22, 2024
Accepted: May. 13, 2025
Published Online: May. 13, 2025
The Author Email: LI Xiaolin (lixiaolin990@163.com)