Infrared and Laser Engineering, Volume. 51, Issue 2, 20220110(2022)
Computational optical imaging: An overview
[7] [7] RASKAR R. Computational photography[COL]Frontiers in Optics 2009Laser Science XXVFall 2009 OSA Optics & Photonics Technical Digest, 2009: CTuA1. [2019–06–23].https:www.osapublishing.gabstract.cfmuri=COSI2009CTuA1.
[9] [9] BRADY D J. Optical Imaging Spectroscopy[M]. New Jersey: John Wiley & Sons, 2009.
[10] [10] Computational imaging: Rethinking how we look at the wld[JOL]. [2019–06–26]. https:www.mitre.gpublicationsprojectstiescomputationalimagingrethinkinghowwelookatthewld.
[17] [17] van der GRACHT J, JR E R D, JR W T C, et al. Aspheric optical elements f extended depthoffield imaging[COL]Novel Optical Systems Design Optimization. International Society f Optics Photonics, 1995: 279–288. [2019–06–24]. https:www.spiedigitallibrary.gconferenceproceedingsofspie25370000Asphericopticalelementsfextendeddepthoffieldimaging10.111712.216392.sht.
[19] [19] ADELSON E H, BERGEN J R. The Plenoptic Function the Elements of Early Vision[M] Ly M, Movshon J A. Computational Models of Visual Processing. Massachusetts: MIT Press, 1991: 320.
[20] [20] LEVOY M, HANRAHAN P. Light field rendering[COL]Proceedings of the 23 rd Annual Conference on Computer Graphics Interactive TechniquesSIGGRAPH ’96. New Yk: ACM Press, 1996: 31–42. [2019–06–24]. http:ptal.acm.gcitation.cfmdoid=237170.237199.
[21] S K NAYAR, M NOGUCHI. Real-time focus range sensor. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18, 13(1996).
[23] [23] DEBEVEC P E, MALIK J. Recovering high dynamic range radiance maps from photographs[COL]Proceedings of the 24 th Annual Conference on Computer Graphics Interactive Techniques. New Yk, USA: ACM PressAddisonWesley Publishing Co., 1997: 369–378. [2019–06–24].https:doi.g10.1145258734.258884.
[24] [24] NAYAR S K, MITSUNAGA T. High dynamic range imaging: spatially varying pixel exposures[C]Proceedings of IEEE Conference on Computer Vision Pattern Recognition, 2000.
[25] [25] NAYAR S K, BRANZOI V, BOULT T E. Programmable imaging using a digital micromirr array[COL]Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision Pattern Recognition. CVPR. Washington, DC, USA: IEEE, 2004: 436–443. [2019–06–24]. http:ieeexple.ieee.gdocument1315065.
[27] [27] SCHECHNER Y Y, NARASIMHAN S G, NAYAR S K. Instant dehazing of images using polarization[COL]Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision Pattern Recognition. CVPR. Kauai, HI, USA: IEEE Comput Soc, 2001: I325I–332. [2019–06–24]. http:ieeexple.ieee.gdocument990493.
[31] [31] RASKAR R, TUMBLIN J. Computational Photography, Imaging Video[EBOL]. [2019–06–25]. https:web.media.mit.edu~raskarphoto.
[32] [32] WILBURN B, JOSHI N, VAISH V, et al. Highspeed videography using a dense camera array [C]Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision Pattern Recognition, 2004.
[33] [33] LEVOY M, CHEN B, VAISH V, et al. Synthetic aperture confocal imaging[COL]ACM SIGGRAPH 2004 Papers. New Yk, NY, USA: ACM, 2004: 825–834. [2019–06–24]. http:doi.acm.g10.11451186562.1015806.
[34] [34] WILBURN B, JOSHI N, VAISH V, et al. High perfmance imaging using large camera arrays[COL]ACM SIGGRAPH 2005 Papers. New Yk, NY, USA: ACM, 2005: 765–776. [2019–06–24]. http:doi.acm.g10.11451186822.1073259.
[36] [36] RASKAR R, TAN KH, FERIS R, et al. Nonphotealistic camera: Depth edge detection stylized rendering using multiflash imaging[COL]ACM SIGGRAPH 2004 Papers. New Yk, USA: ACM, 2004: 679–688. [2019–06–26]. http:doi.acm.g10.11451186562.1015779.
[37] R NG, M LEVOY, M BRÉDIF, et al. Light field photography with a hand-held plenoptic camera. Computer Science Technical Report CSTR, 2, 1-11(2005).
[39] [39] SEN P, CHEN B, GARG G, et al. Dual photography[COL]ACM SIGGRAPH 2005 Papers. New Yk, NY, USA: ACM, 2005: 745–755. [2019–06–24]. http:doi.acm.g10.11451186822.1073257.
[40] [40] TAKHAR D, LASKA J N, WAKIN M B, et al. A new compressive imaging camera architecture using opticaldomain compression[COL]. BOUMAN C A, MILLER E L, POLLAK I. [2019–06–26]. http:proceedings.spiedigitallibrary.gproceeding.aspxarticleid=728899.
[43] [43] LEVOY M, NG R, ADAMS A, et al. Light Field Microscopy[COL]ACM SIGGRAPH 2006 Papers. New Yk, NY, USA: ACM, 2006: 924–934. [2019–06–24]. http:doi.acm.g10.11451179352.1141976.
[44] [44] RASKAR R, AGRAWAL A, TUMBLIN J. Coded exposure photography: Motion deblurring using fluttered shutter[COL]ACM SIGGRAPH 2006 Papers. New Yk, NY, USA: ACM, 2006: 795–804[2017–03–14]. http:doi.acm.g10.11451179352.1141957.
[45] [45] LEVIN A, FERGUS R, DUR F, et al. Image depth from a conventional camera with a coded aperture[COL]ACM SIGGRAPH 2007 Papers. New Yk, NY, USA: ACM, 2007. [2019–06–26]. http:doi.acm.g10.11451275808.1276464.
[46] [46] VEERARAGHAVAN A, RASKAR R, AGRAWAL A, et al. Dappled photography: Mask enhanced cameras f heterodyned light fields coded aperture refocusing[COL]ACM SIGGRAPH 2007 Papers. New Yk, NY, USA: ACM, 2007. [2017–03–14]. http:doi.acm.g10.11451275808.1276463.
[47] [47] RASKAR R. Less is me: Coded computational photography[COL]Proceedings of the 8 th Asian Conference on computer Vision Volume Part I. Berlin, Heidelberg: SpringerVerlag, 2007: 1–12. [2019–06–25]. http:dl.acm.gcitation.cfmid=1775614.1775616.
[50] H W BABCOCK. The possibility of compensating astronomical seeing. Publications of the Astronomical Society of the Pacific, 65, 229-236(1953).
[51] [51] HARDY J W. Active optics: A new technology f the control of light [C]Proceedings of the IEEE, 1978, 66(6): 651–697.
[52] [52] FRIED D. Special issue on adaptive optics[J]. JOSA, 1977, 67(3): 47.
[53] [53] LINNIK V P. On the possibility of reducing the influence of atmospheric seeing on the image quality of stars[C]European Southern Observaty Conference Wkshop Proceedings. 1994, 48: 535.
[54] R GERCHBERG, W SAXTON. A practical algorithm for the determination of the phase from image and diffraction plane pictures. Optik (Jena), 35, 237(1972).
[55] R W GERCHBERG. Phase determination from image and diffraction plane pictures in the electron microscope. Optik, 34, 275-284(1971).
[58] [58] CHIANG F P. Moire methods f contouring displacement, deflection, slope curvature[COL]. [2019–06–26]. http:adsabs.harvard.eduabs1978 SPIE..153..113 C.
[59] K Creath, J C Wyant. Moiré and fringe projection techniques. Optical Shop Testing, 2, 653-685(1992).
[63] [63] MALACARA D. Optical Shop Testing[M]. New Jersey: John Wiley & Sons, 2007.
[65] [65] GAB D. A New microscopic principle[EBOL]. [2019–06–24]. https: www.nature.comarticles161777 a0.
[78] [78] FENIME E E, CANNON T M, MILLER E L. Comparison of Fresnel zone plates unifmly redundant arrays[COL]Digital Image Processing II. International Society f Optics Photonics, 1978: 232–236. [2019–06–26]. https:www.spiedigitallibrary.gconferenceproceedingsofspie01490000ComparisonOfFresnelZonePlatesUnifmlyRedundantArrays10.111712.956690.sht.
[80] [80] OSA. Computational Optical Sensing Imaging[EBOL]. [2019–06–24]. https:www.osapublishing.gconference.cfmmeetingid=15.
[87] [87] SULLIVAN B T. Computational photography is ready f its closeup[EBOL]. [2019–06–26]. https:www.pcmag.comarticle362806computationalphotographyisreadyfitscloseup.
[89] [89] COWLEY J M. Diffraction Physics[M]. 3rd ed. Amsterdam: Elsevier Science B V, 1995.
[90] [90] GOODMAN J W. Introduction to Fourier Optics[M]. Colado: Roberts Company Publishers, 2005.
[91] [91] BN M, WOLF E, BHATIA A B, et al. Principles of Optics: Electromagic They of Propagation, Interference Diffraction of Light[M]. 7th ed. Cambridge: Cambridge University Press, 1999.
[94] G NOMARSKI. Differential microinterferometer with polarized waves. J Phys Radium Paris, 16, 9S-11S(1955).
[97] J OLE, LEKBERG. Electronic speckle pattern interferometry. Physics in Technology, 11, 16(1980).
[102] [102] SCHNARS U, JUEPTNER W. Digital Holography: Digital Hologram Recding, Numerical Reconstruction, related techniques[MOL]. Springer Science & Business Media, 2005. [2017–07–04]. https:link.springer.combook10.1007b138284.
[107] [107] KIM M K. Digital Holographic Microscopy[MOL]Digital Holographic Microscopy. New Yk: Springer, 2011: 149–190. [2017–07–04]. https:link.springer.comchapter10.10079781441977939_11.
[110] J HARTMANN. Bemerkungen uber den bau und die justirung von spektrographen. Zt Instrumentenkd, 20, 17-27(1990).
[112] R V SHACK, B PLATT. Production and use of a lenticular Hartmann screen. Journal of the Optical Society of America, 61, 656-661(1971).
[121] [121] GREIVENKAMP J E, SMITH D G, GAPPINGER R O, et al. Optical testing using ShackHartmann wavefront senss[C] Optical Engineering f Sensing Nanotechnology (ICOSN 2001). SPIE, 2001, 4416: 260263.
[128] [128] KOHNEN T, KOCH D. Cataract Refractive Surgery[M]. Berlin: Springer, 2006.
[137] [137] GONSALVES R A, CHIDLAW R. Wavefront sensing by phase retrieval[C]Applications of Digital Image Processing III. SPIE, 1979, 207: 3239.
[174] F HUE, J M RODENBURG, A M MAIDEN, et al. Wave-front phase retrieval in transmission electron microscopy via ptychography. Physical Review B, 82, 121415(2010).
[177] [177] MARRISON J, RTY L, MARRIOTT P, et al. Ptychography – a label free, highcontrast imaging technique f live cells using quantitative phase infmation[JOL]. Scientific Repts, 2013, 3(1)[2017–07–05]. http:www.nature.comarticlessrep02369.
[192] [192] RODDIER F, RODDIER C, RODDIER N. Curvature sensing: A new wavefront sensing method[COL]. 1988: 203209. http:dx.doi.g10.111712.948547.
[195] [195] RODDIER N A. Algithms f wavefront reconstruction out of curvature sensing data[COL]. http:dx.doi.g10.111712.48799.
[247] Y FAN, J SUN, Q CHEN, et al. Optimal illumination scheme for isotropic quantitative differential phase contrast microscopy. arXiv preprint, 1903.10718(2019).
[261] [261] JUNG D, CHOI JH, KIM S, et al. Smartphonebased multicontrast microscope using colmultiplexed illumination[JOL]. Scientific Repts, 2017, 7(1): 7564. [2019–06–05]. http:www.nature.comarticless4159801707703w.
[264] J SUN, Y Zhang, Q CHEN, et al. Fourier ptychographic microscopy: Theory, advances, and applications. Acta Optica Sinica, 36, 89-107(2016).
[268] [268] DEBSKIA W, WALCZYKOWSKIA P, KLEWSKIA A, et al. Analysis of usage of multispectral video technique f distinguishing objects in real time[C]20th ISPRS Congress, 2004.
[271] Z ZHAO, L DENG, L BAI, et al. Optimal imaging band selection mechanism of weld pool vision based on spectrum analysis. Optics & Laser Technology, 110, 145-151(2019).
[278] [278] CIMINO P, NEESE F, BARONE V. Computational Spectroscopy: Methods, Experiments Applications[M]. Weinheim: WileyVCH, 2010.
[279] R Y WEI, J S ZHOU, J J JING, et al. Developments and trends of the computed tomography imaging spectrometers. Spectroscopy and Spectral Analysis, 30, 2866-2873(2010).
[281] [281] FANG J, ZHAO D, JIANG Y. New method in imaging spectrometry[C]Col Science Imaging Technologies. International Society f Optics Photonics, 2002: 56–63.
[283] E CANDES, T TAO. Decoding by linear programming. arXiv preprint, math/0502327(2005).
[284] E CANDES, J ROMBERG, T TAO. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. arXiv preprint, math/0409186(2004).
[285] [285] BRADY D J, GEHM M E. Compressive imaging spectrometers using coded apertures[COL]Visual Infmation Processing XV. International Society f Optics Photonics, 2006: 62460 A. [2019–06–28]. https:www.spiedigitallibrary.gconferenceproceedingsofspie624662460 ACompressiveimagingspectrometersusingcodedapertures10.111712.667605.sht.
[299] [299] FARLOW C A, CHENAULT D B, PEZZANITI J L, et al. Imaging polarimeter development applications[COL]Polarization Analysis Measurement IV. International Society f Optics Photonics, 2002: 118–125. [2019–06–05]. https:www.spiedigitallibrary.gconferenceproceedingsofspie44810000Imagingpolarimeterdevelopmentapplications10.111712.452880.sht.
[300] [300] PEZZANITI J L, CHENAULT D B. A division of aperture MWIR imaging polarimeter[COL]Polarization Science Remote Sensing II. International Society f Optics Photonics, 2005: 58880 V. [2019–06–28]. https:www.spiedigitallibrary.gconferenceproceedingsofspie588858880 VAdivisionofapertureMWIRimagingpolarimeter10.111712.623543.sht.
[301] [301] Ndin G P, Meier J T, Deguzman P C, et al. Diffractive optical element f Stokes vect measurement with a focal plane array[C]Polarization: Measurement, Analysis, Remote Sensing II. SPIE, 1999, 3754: 169177.
[313] [313] LIANG J, JU H, ZHANG W, et al. Review of optical polarimetric dehazing technique[JOL]. 2017, 37(4): 0400001. [2022–02–14]. http:ir.opt.ac.cnhle18166128922.
[316] [316] Crosby F J. Stokes vect component versus elementary fact perfmance in a target detection algithm[C]Polarization: Measurement, Analysis, Remote Sensing VI. SPIE, 2004, 5432: 111.
[317] [317] Cavanaugh D B, Castle K R, Davenpt W. Anomaly detection using the hyperspectral polarimetric imaging testbed[C]Algithms Technologies f Multispectral, Hyperspectral, Ultraspectral Imagery XII. SPIE, 2006, 6233: 625637.
[318] [318] Egan W G, Duggin M J. Synthesis of optical polarization signatures of military aircraft[C]Polarization Analysis Measurement IV. International Society f Optics Photonics, 2002, 4481: 188194.
[319] [319] Egan W G, Liu Q. Polarized MODTRAN 3.7 applied to acterization of ocean col in the presence of aerosols[C]Polarization Analysis Measurement IV. International Society f Optics Photonics, 2002, 4481: 228241.
[320] [320] Goldstein D H. Polarimetric acterization of federal stard paints[C]Polarization Analysis, Measurement, Remote Sensing III. SPIE, 2000, 4133: 112123.
[321] [321] Le Hs L, Hartemann P, Dolfi D, et al. Phenomenological model of paints f multispectral polarimetric imaging[C]Targets Backgrounds VII: acterization Representation. SPIE, 2001, 4370: 94105.
[322] [322] Fssell G, HedbgKarlsson E. Measurements of polarization properties of camouflaged objects of the denial of surfaces covered with cenospheres[C]Targets Backgrounds IX: acterization Representation. International Society f Optics Photonics, 2003, 5075: 246258.
[323] [323] Aron Y, Gronau Y. Polarization in the MWIR: A method to improve target aquisition[C]Infrared Technology Applications XXXI. SPIE, 2005, 5783: 653661.
[326] L B Wolff, T E Boult. Constraining object features using a polarization reflectance model. Phys Based Vis Princ Pract Radiom, 1, 167(1993).
[328] [328] Duncan D D, Hahn D V, Thomas M E. Physicsbased polarimetric BRDF models[C]Optical Diagnostic Methods f Inganic Materials III. SPIE, 2003, 5192: 129140.
[333] [333] Jacques S L, Samatham R, Isenhath S, et al. Polarized light camera to guide surgical excision of skin cancers[C]Photonic Therapeutics Diagnostics IV. SPIE, 2008, 6842: 102108.
[335] [335] OLDENBOURG R. New views on polarization microscopy[C]European Cells Materials, 2001.
[336] M Itoh, M Yamanari, Y Yasuno, et al. Polarization characteristics of multiple backscattering in human blood cell suspensions. Optical and Quantum Electronics, 37, 1277-1285(2005).
[353] D Brewster. X. On the communication of the structure of doubly refracting crystals to glass, muriate of soda, fluor spar, and other substances, by mechanical compression and dilatation. By David Brewster, LL. DFRS Lond. and Edin. In a letter addressed to the Right Hon. Sir Joseph Banks, Bart. G. C. B. P. R S.. Philosophical Transactions of the Royal Society of London, 156-178(1816).
[354] [354] Hecker F W, Mche B. Computeraided measurement of relative retardations in plane photoelasticity[M]Experimental stress analysis. Ddrecht: Springer, 1986: 535542.
[356] [356] Kihara T. Automatic wholefield measurement of principal stress directions using three wavelengths[C]Proc 10th Int Conf on Experimental Mechanics, Lisbon, 1994: 9599.
[360] [360] AJOVALASIT A, PETRUCCI G. Analisi automatica delle frange fotoelastiche in luce bianca[C]Proceedings of the XVIII AIAS Conference, 1990.
[369] R J WOODHAM. Photometric method for determining surface orientation from multiple images. Optical Engineering, 19, 191139(1980).
[373] [373] PARK JS, TOU J T. Highlight separation surface ientations f 3D specular objects[C]IEEE Proceedings. 10 th International Conference on Pattern Recognition, 1990: 331–335.
[374] K IKEUCHI. Determining surface orientations of specular surfaces by using the photometric stereo method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 3, 661-669(1981).
[375] [375] WU TP, TANG CK. Dense photometric stereo using a mirr sphere graph cut[C]2005 IEEE Computer Society Conference on Computer Vision Pattern Recognition (CVPR’05). IEEE, 2005: 140–147.
[377] [377] GEIGER A, ROSER M, URTASUN R. Efficient largescale stereo matching[C]Asian Conference on Computer Vision. Springer, 2010: 25–38.
[378] [378] TAN X, SUN C, WANG D, et al. Soft cost aggregation with multiresolution fusion[C]European Conference on Computer Vision. Springer, 2014: 17–32.
[379] [379] YANG Q, YANG R, DAVIS J, et al. Spatialdepth super resolution f range images[C]2007 IEEE Conference on Computer Vision Pattern Recognition. IEEE, 2007: 1–8.
[380] K-J YOON, I S KWEON. Adaptive support-weight approach for correspondence search. IEEE Transactions on Pattern Analysis & Machine Intelligence, 28, 650-656(2006).
[381] A HOSNI, C RHEMANN, M BLEYER, et al. Fast cost-volume filtering for visual correspondence and beyond. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35, 504-511(2012).
[382] Q YANG, L WANG, R YANG, et al. Stereo matching with color-weighted correlation, hierarchical belief propagation, and occlusion handling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31, 492-504(2008).
[383] [383] KLAUS A, SMANN M, KARNER K. Segmentbased stereo matching using belief propagation a selfadapting dissimilarity measure[C]18th International Conference on Pattern Recognition (ICPR’06). IEEE, 2006: 15–18.
[385] [385] LOOP C, ZHANG Z. Computing rectifying homographies f stereo vision[C]Proceedings. 1999 IEEE Computer Society Conference on Computer Vision Pattern Recognition (Cat. No PR00149), 1999: 125–131.
[386] [386] GEHRIG S K, EBERLI F, MEYER T. A realtime lowpower stereo vision engine using semiglobal matching[C]International Conference on Computer Vision Systems. Springer, 2009: 134–143.
[387] H SHIM, S LEE. Performance evaluation of time-of-flight and structured light depth sensors in radiometric/geometric variations. Optical Engineering, 51, 094401(2012).
[388] L YU, D Zhang, B Yu, et al. Research of 3 D laser scanning measurement system for mining. Metal Mine, 101-103+107(2012).
[390] [390] DRINGTON A A, KELLY C B D, MCCLURE S H, et al. Advantages of 3 D timeofflight range imaging cameras in machine vision applications[C] The 16th Electronics New Zeal Conference (ENZCon), 2009: 95–99.
[391] [391] GANAPATHI V, PLAGEMANN C, KOLLER D, et al. Real time motion capture using a single timeofflight camera[COL]2010 IEEE Computer Society Conference on Computer Vision Pattern Recognition. San Francisco, CA, USA: IEEE, 2010: 755–762. [2019–06–04]. http:ieeexple.ieee.gdocument5540141.
[392] [392] HSU S, AYA S, RAFII A, et al. Perfmance of a TimeofFlight Range Camera f Intelligent Vehicle Safety Applications[M]Advanced Microsystems f Automotive Applications. Berlin: Springer, 2006: 205–219.
[393] [393] HAHNE U, ALEXA M. Depth imaging by combining timeofflight ondem stereo[C]Wkshop on Dynamic 3 D Imaging. Springer, 2009: 70–83.
[394] [394] SCHUON S, THEOBALT C, DAVIS J, et al. Highquality scanning using timeofflight depth superresolution[C]2008 IEEE Computer Society Conference on Computer Vision Pattern Recognition Wkshops. IEEE, 2008: 1–7.
[395] Y CUI, S SCHUON, S THRUN, et al. Algorithms for 3 d shape scanning with a depth camera. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35, 1039-1050(2012).
[398] [398] GAO Z. The Research of terrestrial Laser Scanning Data Processing Modeling[D]. Xi’an: Chang''an University, 2010.
[399] [399] FANG W, Research on Automatic Texture mapping of terrestrial laser scanning data combining photogrammetry techniques[D]. Wuhan: Wuhan University, 2014.
[404] S S GORTHI, P RASTOGI. Fringe projection techniques: Whither we are?. Optics & Lasers in Engineering, 48, 133-140(2010).
[410] Z WANG, D A NGUYEN, J C BARNES. Some practical considerations in fringe projection profilometry. Optics & Lasers in Engineering, 48, 218-225(2010).
[412] [412] KÜHMSTEDT P, MUNCKELT C, HEINZE M, et al. 3D shape measurement with phase crelation based fringe projection[C]Optical Measurement Systems f Industrial Inspection V. International Society f Optics Photonics, 2007: 66160B.
[416] X SU, Q ZHANG. Dynamic 3-D shape measurement method: A review. Optics & Lasers in Engineering, 48, 191-204(2010).
[421] J LI, L G HASSEBROOK, C GUAN. Optimized two-frequency phase-measuring-profilometry light-sensor temporal-noise sensitivity.. Journal of the Optical Society of America:A Optics Image Science & Vision, 20, 106-115(2003).
[422] S ZHANG. Recent progresses on real-time 3D shape measurement using digital fringe projection techniques. Optics & Lasers in Engineering, 48, 149-158(2010).
[424] C ZUO, L HUANG, M ZHANG, et al. Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review. Optics & Lasers in Engineering, 85, 84-103(2016).
[437] [437] BURKE J, BOTHE T, OSTEN W, et al. Reverse engineering by fringe projection[C]Interferometry XI: Applications. International Society f Optics Photonics, 2002: 312–325.
[449] [449] WEISE T, LEIBE B, VAN GOOL L. Fast 3D Scanning with automatic motion compensation[C]CVPR’07. IEEE Conference on Computer Vision Pattern Recognition, 2007.
[454] [454] BRÄUERBURDT C, MUNKELT C, HEINZE M, et al. Using geometric constraints to solve the point crespondence problem in fringe projection based 3D measuring systems[C]International Conference on Image Analysis Processing. 2011.
[459] J ZHANG, G JIN, S MA, et al. Application of an improved subpixel registration algorithm on digital speckle correlation measurement. Optics & Laser Technology, 35, 533-542(2003).
[462] [462] FENG S, ZUO C, YIN W, et al. Micro deep learning profilometry f highspeed 3D surface imaging[JOL]. Optics Lasers in Engineering, 2019, 121: 416–427. [2019–12–20]. https:linkinghub.elsevier.comretrievepiiS0143816619302015.
[463] [463] QIAN J, FENG S, TAO T, et al. Deeplearningenabled geometric constraints phase unwrapping f singleshot absolute 3 D shape measurement[JOL]. APL Photonics, 2020, 5(4): 046105. [2020–06–23]. http:aip.scitation.gdoi10.10635.0003217. DOI: 10.10635.0003217.
[465] [465] LI Y, QIAN J, FENG S, et al. Composite fringe projection deep learning profilometry f singleshot absolute 3D shape measurement[JOL]. Optics Express, 2022, 30(3): 3424. [2022–02–13]. https:opg.optica.gabstract.cfmURI=oe3033424.
[466] [466] VAN DER JEUGHT S, DIRCKX J J J. Deep neural wks f single shot structured light profilometry[JOL]. Optics Express, 2019, 27(12): 17091. [2020–07–19]. https:www.osapublishing.gabstract.cfmURI=oe271217091.
[467] [467] NGUYEN H, WANG Y, WANG Z. Singleshot 3D shape reconstruction using structured light deep convolutional neural wks[JOL]. Senss, 2020, 20(13): 3718. [2020–07–08]. https:www.mdpi.com1424822020133718.
[468] [468] ZHENG Y, WANG S, LI Q, et al. Fringe projection profilometry by conducting deep learning from its digital twin[JOL]. Optics Express, 2020, 28(24): 36568. [2021–05–08]. https:www.osapublishing.gabstract.cfmURI=oe282436568.
[471] [471] ZHOU W, SONG Y, QU X, et al. Fourier transfm profilometry based on convolution neural wk[COL]. HAN S, YOSHIZAWA T, ZHANG S. Optical Metrology Inspection f Industrial Applications V. Beijing, China: SPIE, 2018: 62. [2020–03–15]. https:www.spiedigitallibrary.gconferenceproceedingsofspie108192500884Fouriertransfmprofilometrybasedonconvolutionneuralwk10.111712.2500884.full.
[473] [473] YAN K, YU Y, HUANG C, et al. Fringe pattern denoising based on deep learning[JOL]. Optics Communications, 2019, 437: 148–152. [2021–11–29]. https:linkinghub.elsevier.comretrievepiiS0030401818311076.
[476] [476] NG R, LEVOY M, BREDIF M, et al. Light field photography with a hheld plenoptic camera[D]. Califnia: Stanfd University, 2005.
[477] [477] PERWASS C, WIETZKE L. Single lens 3Dcamera with extended depthoffield[COL]. [2019–06–04]. http:proceedings.spiedigitallibrary.gproceeding.aspxdoi=10.111712.909882.
[479] [479] LEVOY M, HANRAHAN P. Light field rendering[COL]Proceedings of the 23rd Annual Conference on Computer Graphics Interactive Techniques SIGGRAPH ’96. Not Known: ACM Press, 1996: 31–42. [2019–05–10]. http:ptal.acm.gcitation.cfmdoid=237170.237199.
[480] J C YANG, M EVERETT, C BUEHLER, et al. A real-time distributed light field camera.. Rendering Techniques, 2002, 77-86(2002).
[481] [481] WILBURN B, JOSHI N, VAISH V, et al. High perfmance imaging using large camera arrays[COL]ACM SIGGRAPH 2005 Papers. New Yk, NY, USA: ACM, 2005: 765–776. [2019–06–05]. http:doi.acm.g10.11451186822.1073259.
[485] [485] LIANG CK, LIN TH, WONG BY, et al. Programmable aperture photography: Multiplexed light field acquisition [M]ACM SIGGRAPH 2008 papers. 2008: 110.
[491] X XIAO, Z WANG, C SUN, et al. Research on focusing and ranging method based on light field camera technology. Acta Photonica Sinica, 37, 2539(2008).
[492] [492] VAISH V, GARG G, TALVALA E, et al. Synthetic aperture focusing using a shearwarp factization of the viewing transfm[COL]2005 IEEE Computer Society Conference on Computer Vision Pattern Recognition (CVPR’05). San Diego, CA, USA: IEEE, 2005: 129. [2019–06–04]. http:ieeexple.ieee.gdocument1565441.
[493] [493] Godfrey Hounsfield[ZOL]. (2019–04–15)[2019–06–28].https:en.wikipedia.gwindex.phptitle=Godfrey_Hounsfield&oldid=892611195.
[495] [495] Allan MacLeod Cmack[ZOL]. (2019–06–04)[2019–06–29]. https:en.wikipedia.gwindex.phptitle=Allan_MacLeod_Cmack&oldid=900263100.
[496] [496] Isid Isaac Rabi Wikipedia[EBOL]. [2019–06–29]. https:en.wikipedia.gwikiIsid_Isaac_Rabi.
[497] [497] Nuclear magic resonance Wikipedia[EBOL]. [2019–06–29]. https:en.wikipedia.gwikiNuclear_magic_resonance.
[499] [499] DIASPRO A. Confocal TwoPhoton Microscopy: Foundations, Applications Advances[MOL]. New Yk : WileyLiss, 2002. http:adsabs.harvard.eduabs2001 ctmf.book.....D.
[503] [503] WEINSTEIN M, CASTLEMAN K R. Reconstructing 3D specimens from 2D section images[COL]Quantitative Imagery in the Biomedical Sciences I. International Society f Optics Photonics, 1971: 131–138. [2019–06–29].https:www.spiedigitallibrary.gconferenceproceedingsofspie00260000Reconstructing3DSpecimensFrom2DSectionImages10.111712.975337.sht.
[511] [511] REMMELE S, SEEL M, HESSER J. Fluescence Microscopy Deconvolution Based on Bregman Iteration RidsonLucy Algithm with TV Regularization[MOL]Bildverarbeitung Für Die Medizin. Berlin: Springer, 2008: 72–76. [2018–07–20].https:link.springer.comchapter10.10079783540786405_15.
[516] [516] LEVOY M, NG R, ADAMS A, et al. Light Field Microscopy[COL]ACM SIGGRAPH 2006 Papers. New Yk, USA: ACM, 2006: 924–934. [2019–06–05]. http:doi.acm.g10.11451179352.1141976.
[527] [527] KAK A C, SLANEY M. Principles of Computerized Tomographic Imaging[MOL]. Philadelphia: SIAM, 2001. [2017–09–25]. http:epubs.siam.gdoipdf10.11371.9780898719277.fm.
[531] [531] CHOI W. Tomographic phase microscopy its biological applications[JOL]. 3D Research, 2012, 3(4): 111. [2017–11–20]. http:link.springer.com10.10073 DRes.04(2012)5.
[551] R ZHANG, Z CAI, J SUN, et al. Calculation of coherent field and its application in optical imaging. Laser & Optoelectronics Progress, 58, 1811025(2021).
[554] LS DOLIN. Beam description of weakly-inhomogeneous wave fields. Izv Vyssh Uchebn Zaved Radiofiz., 7, 559-563(1964).
[560] [560] TESTF M, HENNELLY B, OJEDACASTANEDA J. PhaseSPACE Optics: Fundamentals Applications[M]. New Yk: McGrawHill Education, 2009.
[571] [571] GLASNER D, BAGON S, IRANI M. Superresolution from a single image[COL]2009 IEEE 12 th International Conference on Computer Vision. Kyoto: IEEE, 2009: 349–356. [2019–06–05]. http:ieeexple.ieee.gdocument5459271.
[572] [572] HUANG JB, SINGH A, AHUJA N. Single image superresolution from transfmed selfexemplars[COL]2015 IEEE Conference on Computer Vision Pattern Recognition (CVPR). Boston, MA, USA: IEEE, 2015: 5197–5206. [2019–06–05]. http:ieeexple.ieee.gdocument7299156.
[576] F BIONDI. Recovery of partially corrupted SAR images by super-resolution based on spectrum extrapolation. IEEE Geoscience and Remote Sensing Letters, 14, 139-143(2016).
[578] M ELAD, D DATSENKO. Example-based regularization deployed to super-resolution reconstruction of a single image. The Computer Journal, 52, 15-30(2009).
[580] C DONG, C C LOY, K HE, et al. Image super-resolution using deep convolutional networks. IEEE Transactions on Pattern Analysis and Machine Iintelligence, 38, 295-307(2015).
[582] [582] WANG B, ZOU Y, ZHANG L, et al. Lowlightlevel image superresolution reconstruction based on a multiscale features extraction wk [J]. Photonics, 2021, 8(8): 321.
[583] [583] VEWALLE P, SSSTRUNK S, VETTERLI M. A frequency domain approach to registration of aliased images with application to superresolution[JOL]. EURASIP Journal on Advances in Signal Processing, 2006(1): 71459. [2019–06–05].https:aspeurasipjournals.springeropen.comarticles10.1155ASP200671459.
[586] [586] WANG Z, LIU D, YANG J, et al. Deep wks f image superresolution with sparse pri[COL]2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile: IEEE, 2015: 370–378. [2019–06–05]. http:ieeexple.ieee.gdocument7410407.
[591] G HUSZKA, M A GIJS. Turning a normal microscope into a super-resolution instrument using a scanning microlens array. Scientific Reports, 8, 601(2018).
[593] [593] CABANSKI W A, BREITER R, MAUK KH, et al. Miniaturized highperfmance starring thermal imaging system[C]Infrared Detects Focal Plane Arrays VI. International Society f Optics Photonics, 2000: 208–219.
[594] [594] WANG B, ZUO C, SUN J, et al. A computational superresolution technique based on coded aperture imaging[COL]. PETRUCCELLI J C, TIAN L, PREZA C. Computational Imaging V. United States: SPIE, 2020: 25. [2020–10–13].https:www.spiedigitallibrary.gconferenceproceedingsofspie113962560579Acomputationalsuperresolutiontechniquebasedoncodedapertureimaging10.111712.2560579.full.
[595] [595] LUCKE R L, RICKARD L J, BASHKANSKY M, et al. Synthetic aperture ladar (SAL): Fundamental they, design equations f a satellite system, labaty demonstration[ROL]. Ft Belvoir, VA: Defense Technical Infmation Center, 2002. [2019–06–05]. http:www.dtic.mildocscitationsADA409859.
[598] [598] GARCA J, MIC V, GARCAMARTNEZ P, et al. Synthetic aperture superresolution by structured light projection[COL]AIP Conference Proceedings. Toledo (Spain): AIP, 2006: 136–145. [2019–06–05]. http:aip.scitation.gdoiabs10.10631.2361214.
[602] [602] HOLLOWAY J, ASIF M S, SHARMA M K, et al. Toward long distance, subdiffraction imaging using coherent camera arrays[JOL]. ArXiv: 1510.08470 [Physics], 2015. [2019–12–18]. http:arxiv.gabs1510.08470.
[603] [603] KENDRICK R L, DUNCAN A, OGDEN C, et al. Segmented planar imaging detect f eo reconnaissance[C]Imaging Applied Optics, OSA, 2013: CM4 C. 1.
[604] [604] KENDRICK R L, DUNCAN A, OGDEN C, et al. Flatpanel spacebased space surveillance sens[C]Advanced Maui Optical Space Surveillance Technologies Conference, 2013.
[606] E ABBE. Beiträge zur Theorie des mikroskops und der mikroskopischen wahrnehmung. Archiv Für Mikroskopische Anatomie, 9, 413-418(1873).
[609] [609] HELL S W, WICHMANN J. Breaking the diffraction resolution limit by stimulated emission: stimulatedemissiondepletion fluescence microscopy[J]. Optics Letters, 1994, 19(11):780782.
[626] [626] SCHERMELLEH L, CARLTON P M, HAASE S, et al. Subdiffraction multicol imaging of the nuclear periphery with 3D structured illumination microscopy[JOL]. Science, 2008, 320(5881): 1332–1336. [2019–06–05]. http:www.sciencemag.gcgidoi10.1126science.1156947.
[627] L ZHIJIAN, L JINGZE, W YAQIONG, et al. Principle and recent progress of several super-resolution fluorescence microscopy techniques. Progress in Biochemistry and Biophysics, 36, 1626-1634(2009).
[638] [638] LIANG L, YAN W, QIN X, et al. Designing sub‐2 nm ganosilica nanohybrids f far‐field super‐resolution imaging[J]. Angewte Chemie, 2020, 132(2): 756761.
[639] [639] Zhao W, Zhao S, Li L. et al. Sparse deconvolution improves the resolution of livecell superresolution fluescence microscopy[JOL]. Nature Biotechnology (2021).https:doi.g10.1038s41587021010922.
[641] [641] HELL S W, SAHL S J, BATES M, et al. The 2015 superresolution microscopy roadmap[J]. Journal of Physics D: Applied Physics, 2015, 48(44): 443001.
[642] [642] CLEGG B. The Man Who Stopped Time: The Illuminating Sty Of Eadweard Muybridge–pioneer Photographer, Father of the Motion Picture, Murderer[M]. Washington, DC: Joseph Henry Press, 2007, 7: 1, 106108.
[645] T KAKUE, K TOSA, J YUASA, et al. Digital light-in-flight recording by holography by use of a femtosecond pulsed laser. IEEE Journal of Selected Topics in Quantum Electronics, 18, 479-485(2011).
[646] Z LI, R ZGADZAJ, X WANG, et al. Single-shot tomographic movies of evolving light-velocity objects. Nature Communications, 5, 1-12(2014).
[649] [649] EHN A, BOOD J, LI Z, et al. FRAME: Femtosecond videography f atomic molecular dynamics[J]. Light: Science & Applications, 2017, 6(9): e17045–e17045.
[650] [650] FERMANN M E, GALVANAUSKAS A, SUCHA G. Ultrafast Lasers: Technology Applications[M]. Boca Raton: CRC Press, 2002.
[652] A VELTEN, D WU, A JARABO, et al. Femto-photography: Capturing and visualizing the propagation of light. ACM Transactions on Graphics (ToG), 32, 1-8(2013).
[654] [654] LIANG J, ZHU L, WANG L V. Singleshot realtime femtosecond imaging of tempal focusing[J]. Light: Science & Applications, 2018, 7(1): 1–10.
[675] M SCHAFFER, SE M GRO\S, B HARENDT, et al. Statistical patterns: an approach for high-speed and high-accuracy shape measurements. Optical Engineering, 53, 112205(2014).
[684] [684] RAGHURAM A, PEDIREDLA A, NARASIMHAN S G, et al. STM: Superresolving transients by oveRsampled measurements[COL]2019 IEEE International Conference on Computational Photography (ICCP). Tokyo, Japan: IEEE, 2019: 1–11. [2022–01–27]. https:ieeexple.ieee.gdocument8747334.
[687] [687] BEITONG C, QIAN D, XIUMIN X, et al. The progress of singlephoton photodetects[JOL]. Laser Technology. [20220218]. http:kns.cnki.kcmsdetail51.1125.TN.20210927.2354.004.html.
[690] S CHEN, A HALIMI, X REN, et al. Learning non-local spatial correlations to restore sparse 3D single-photon data. IEEE Transactions on Image Processing, 29, 3119-3131(2019).
[691] [691] HUA K, LIU B, CHEN Z, et al. Efficient noise robust photoncounting imaging with first signal photon unit method[J]. Photonics, 2021, 8(6): 229.
[695] Y X LIU, Q FAN, X Y LI, et al. Realization of silicon single-photon detector with ultra-low dark count rate. Acta Optica Sinica, 40, 1004001(2020).
[696] [696] LI Z P. Long range singlephoton threedimensional imaging[DOL]. Heifei: University of Science Technology of China, 2020.https:kns.cnki.KCMSdetaildetail.aspxdbcode=CDFD&dbname=CDFDLAST2021&filename=1020088480.nh&v=.
[697] [697] MARINO R, STEPHENS T, HATCH R, et al. A compact 3D imaging laser radar system using Geigermode APD arrays: System measurements[C]Proceedings of SPIE, 2003, 5086: 501581.
[699] [699] MARINO R, DAVIS W. Jigsaw : A foliageperating 3D imaging laser radar system[JOL]. Undefined, 2004.[2022–02–13].https:www.semanticscholar.gpaperJigsaw%3 AAFoliagePerating3DImagingLaserMarinoDavisdd5821 a64 eb27 b04259 c0 fb4 da93 f3 b7601 f70 b1.
[705] [705] CHEN C, CHEN Q, XU J, et al. Learning to see in the dark [C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2008: 32913300.
[707] [707] PENG J, XIONG Z, HUANG X, et al. Photonefficient 3D imaging with a nonlocal neural wk[C]European Conference on Computer Vision, ECCV, 2020: 225241.
[708] [708] TAN H, PENG J, XIONG Z, et al. Deep learning based singlephoton 3D imaging with multiple returns [C]2020 International Conference on 3D Vision (3DV), 2020: 11961205.
[710] [710] ARGUSIS. ARGUSIS[ZOL].(2020–07–15)[2021–03–08]. https:en.wikipedia.gwindex.phptitle=ARGUSIS&oldid=967762056.
[711] [711] WILBURN B, JOSHI N, VAISH V, et al. Highspeed videography using a dense camera array[C]Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision Pattern Recognition, CVPR, 2004.
[713] [713] Perrin S. A 360 Degree camera that sees in 3D (w Video)[EBOL]. 2010, [2021–03–08]. https:phys.gnews201012degreecamera3dvideo.html.
[714] [714] COGAL O, AKIN A, SEYID K, et al. A new omnidirectional multicamera system f high resolution surveillance[C]Mobile MultimediaImage Processing, Security, Applications 2014. International Society f Optics Photonics, 2014, 9120: 91200N.
[715] [715] LAW N M, FS O, RATZLOFF J, et al. The evryscope: Design perfmance of the first fullsky gigapixelscale telescope[C]GroundBased Airbne Telescopes VI. International Society f Optics Photonics, 2016, 9906: 99061M.
[717] [717] LIFANG S. Research experiments on artificial compound eye imaging system with large field of view [D]. Chengdu: University of Electronic Science Technology of China, 2014. (in Chinese)
[718] LIFANG SHI, AXIU C CAO, YUELIAN LIU, et al. Design and experiment of artificial compound eye with large view field. Opto-Electronic Engineering, 40, 27-33(2013).
[719] Z HONGXIN, L ZHENWU, L FENGYOU. The Research progress of artificial compound eye. Journal of Changchun University of Science and Technology, 4-7(2006).
[720] HONGXIN ZHANG, ZHENWU LU, HUA LIU. Novel method to simulate and analyze superposition compound eyes. Optics and Precision Engineering, 16, 1847(2008).
[721] Z HONGXIN, L ZHENWU, L FENGYOU, et al. The building and analysis of the superposition compound eye’s optical model. Acta Photonica Sinica, 36, 1106(2007).
[722] Z HONGXIN, L ZHENWU, L FENGYOU, et al. Simulation and analysis of the apposition compound eye based on the ZEMAX software. Optical Technique, 32, 124-126+129(2006).
[723] ZhAOLOU CAO, ZHENXIAN ZHAN, KEYI WANG. Structural design of spherical compound eye lens for moving object detection. Infrared and Laser Engineering, 40, 70-73(2011).
[724] [724] Fang G. Design on novel compound eye device f target positioning research on the key technology[D]. Hefei: University of Science Technology of China, 2012. (in Chinese)
[725] FANG GUO, KEYI WANG, PEIZHENG YAN, et al. Calibration of compound eye system for target positioning with large field of view. Optics and Precision Engineering, 20, 913-920(2012).
[726] W KEIYI, Z HAO, C ZHAOLOU, et al. Calibration and detection of compound eye model. Optics and Precision Engineering, 18, 1807-1813(2010).
[732] [732] MARKS D L, BRADY D J. Gigagon: A monocentric lens design imaging 40 gigapixels[C]Imaging Systems. Optical Society of America, 2010: ITuC2.
[734] [734] SON H S, MARKS D L, TREMBLAY E, et al. A multiscale, wide field, gigapixel camera[C]Computational Optical Sensing Imaging. Optical Society of America, 2011: JTuE2.
[739] Q JUNKAI, Z FENG, Y GANG, et al. A new super-large of view and small distortion optical system. Spacecraft Recovery & Remote Sensing, 34, 30-35(2013).
[740] [740] AQI Y. Optical design of threeline array airbne mapping camera[D]. Xi''an: University of Chinese Academy of Sciences (Xi''an Institute of Optics Precision Mechanics, Chinese Academy of Sciences), 2015. (in Chinese)
[741] [741] YISI W. Research on wide FOV high resolution earth observation system based on multiscale stitching imaging[D]. Hangzhou: Zhejiang University, 2016. (in Chinese)
[742] S XIAOPENG, L FEI, L WEI, et al. Latest progress in comptutational imaging technology and application. Laser & Optoelectronics Progress, 57, 020001(2020).
[761] [761] ISIKMAN S, SEO S, SENCAN I, et al. Lensfree cell holography on a chip: From holographic cell signatures to microscopic reconstruction[C]2009 IEEE LEOS Annual Meeting Conference Proceedings, 2009.
[801] [801] SUN J, ZUO C, ZHANG J, et al. Highspeed Fourier ptychographic microscopy based on programmable annular illuminations[JOL]. Scientific Repts, (2018–09–11). http:www.nature.comarticless41598018257978.
[804] P NIPKOW. Optical disk. German patent, 30, 15(1884).
[805] [805] LOGIE B J. Apparatus f transmitting views images to a distanc: US, US1699270A[P]. 19290115.
[814] T VASILE, V DAMIAN, D COLTUC, et al. Single pixel sensing for THz laser beam profiler based on Hadamard Transform. Optics & Laser Technology, 79, 173-178(2016).
[815] Z ZHANG, X MA, J ZHONG. Single-pixel imaging by means of Fourier spectrum acquisition. Nature Communications, 6, 1-6(2015).
[822] Y ZHANG, M P EDGAR, B SUN, et al. 3 D single-pixel video. Journal of Optics, 18, 035203(2016).
[833] [833] STANTCHEV R I, YU X, BLU T, et al. Realtime terahertz imaging with a singlepixel detect[JOL]. Nature Communications, 2020, 11(1): 2535. https:doi.g10.1038s4146702016370x.
[835] S V KESAVAN, F P N Y GARCIA, M MENNETEAU, et al. Real-time label-free detection of dividing cells by means of lensfree video-microscopy. Journal of Biomedical Optics, 19, 036004(2014).
[839] A SHANMUGAM, C D SALTHOUSE. Lensless fluorescence imaging with height calculation. Journal of Biomedical Optics, 19, 016002(2014).
[852] L MERTZ, N O YOUNG. Fresnel transformations of images. SPIE Milestone Series Ms, 128, 44-49(1996).
[854] [854] TAJIMA K, SHIMANO T, NAKAMURA Y, et al. Lensless lightfield imaging with multiphased fresnel zone aperture[COL]2017 IEEE International Conference on Computational Photography (ICCP). Stanfd, CA, USA: IEEE, 2017: 1–7.[2021–06–23]. http:ieeexple.ieee.gdocument7951485.
[856] J WU, H ZHANG, W ZHANG, et al. Single-shot lensless imaging with fresnel zone aperture and incoherent illumination. Light: Science & Applications, 9, 53(2020).
[859] G SCHILLING. Catching gamma-ray bursts on the Wing. Sky and Telescope, 107, 32-42(2004).
[861] D L FRIED. Limiting resolution looking down through the atmosphere. JOSA, 56, 1380-1384(1966).
[863] D V MURPHY. Atmospheric-turbulence compensation experiments using cooperative beacons. Lincoln Laboratory Journal, 5, 25-44(1992).
[867] R FOY, A LABEYRIE. Feasibility of adaptive telescope with laser probe. Astronomy and Astrophysics, 152, L29-L31(1985).
[868] R HUMPHREYS, L BRADLEY, J HERRMANN. Sodium-layer synthetic beacons for adaptive optics. The Lincoln Laboratory Journal, 5, 45-66(1992).
[871] [871] ELLERBROEK B, BRITTON M, DEKANY R, et al. Adaptive optics f the thirty meter telescope[C]Astronomical Adaptive Optics Systems Applications II. International Society f Optics Photonics, 2005: 590304.
[873] [873] KERN P, MERKLE F, GAFFARD J P, et al. Prototype of an adaptive optical system f astronomical observation[C]RealTime Image Processing: Concepts Technologies, 1988: 9–16.
[874] G ROUSSET, J FONTANELLA, P KERN, et al. First diffraction-limited astronomical images with adaptive optics. Astronomy and Astrophysics, 230, L29-L32(1990).
[875] [875] FUGATE R Q. The Starfire optical range 3.5m adaptive optical telescope[C]Large Groundbased Telescopes, 2003: 934–944.
[876] [876] ACTON D S, DUNN R B. Solar imaging at national solar observaty using a segmented adaptive optics system[C]Active Adaptive Optical Components Systems II, 1993: 348–353.
[880] L N Z Y R XUEJUN, L X W C H YIYUN, J WENHAN. A small adaptive optical imaging system for cells of living human retina. Acta Optica Sinica, 24, 1153-1158(2004).
[882] J LU, H LI, Y HE, et al. Superresolution in adaptive optics confocal scanning laser ophthalmoscope. Journal of Physics, 60, 266-275(2011).
[883] [883] GU M. Principles of Three Dimensional Imaging in Confocal Microscopes[M]. Singape: Wld Scientific, 1996.
[884] [884] PAWLEY J. Hbook of Biological Confocal Microscopy[M]. Berlin: Springer Science & Business Media, 2010.
[885] [885] WILSON T, OTHERS. Confocal Microscopy[M]. London: Academic Press London, 1990.
[889] J W CHA, J BALLESTA. Shack-hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy. Journal of Biomedical Optics, 15, 10(2010).
[899] [899] ROOMS F, CAMET S, TON J, et al. A new defmable mirr experimental setup f freespace optical communication[C]FreeSpace Laser Communication Technologies XXI, 2009: 71990 O.
[900] [900] BIFANO T G, PERREAULT J A, BIERDEN P A. Micromachined defmable mirr f optical wavefront compensation[C]HighResolution Wavefront Control: Methods, Devices, Applications II, 2000: 7–15.
[905] [905] YANG H, LI X, JIANG W. High resolution imaging of phasedistted extended object using SPGD algithm defmable mirr[C]Optical Design Testing III, 2007: 683411.
[908] J DONG, R BI, J-H HO, et al. Diffuse correlation spectroscopy with a fast Fourier transform-based software autocorrelator. Journal of Biomedical Optics, 17, 097004(2012).
[909] A GIBSON, J HEBDEN, S R ARRIDGE. Recent advances in diffuse optical imaging. Physics in Medicine & Biology, 50, R1(2005).
[927] M LYU, H WANG, G LI, et al. Deep speckle correlation: A deep learning approach toward scalable imaging through scattering media. Optica, 5, 1181-1190(2018).
[944] [944] SCRIBNER D A, SARKADY K A, CAULFIELD J T, et al. Nonunifmity crection f staring IR focal plane arrays using scenebased techniques[COL]Infrared Detects Focal Plane Arrays. International Society f Optics Photonics, 1990: 224–233.[2019–06–09].https:www.spiedigitallibrary.gconferenceproceedingsofspie13080000NonunifmitycrectionfstaringIRfocalplanearraysusingscene10.111712.21730.sht.
[946] [946] SCRIBNER D A, SARKADY K A, KRUER M R, et al. Adaptive nonunifmity crection f IR focalplane arrays using neural wks[COL]Infrared Senss: Detects, Electronics, Signal Processing. International Society f Optics Photonics, 1991: 100–109.[2019–06–09].https:www.spiedigitallibrary.gconferenceproceedingsofspie15410000AdaptivenonunifmitycrectionfIRfocalplanearraysusingneural10.111712.49324.sht.
[947] [947] HARRIS J G, CHIANG YM. Nonunifmity crection using the constantstatistics constraint: Analog digital implementations[COL]Infrared Technology Applications XXIII. International Society f Optics Photonics, 1997: 895–905.[2019–06–09].https:www.spiedigitallibrary.gconferenceproceedingsofspie30610000Nonunifmitycrectionusingtheconstantstatisticsconstraintanalog10.111712.280308.sht.
[948] [948] HARRIS J G, CHIANG YM. Minimizing the ghosting artifact in scenebased nonunifmity crection[COL]Infrared Imaging Systems: Design, Analysis, Modeling, Testing IX. International Society f Optics Photonics, 1998: 106–113. [2019–06–09].https:www.spiedigitallibrary.gconferenceproceedingsofspie33770000Minimizingtheghostingartifactinscenebasednonunifmitycrection10.111712.319364.sht.
[953] [953] TRES S N, VERA E M, REEVES R A, et al. Adaptive scenebased nonunifmity crection method f infraredfocal plane arrays[COL]Infrared Imaging Systems: Design, Analysis, Modeling, Testing XIV. International Society f Optics Photonics, 2003: 130–139. [2019–06–09].https:www.spiedigitallibrary.gconferenceproceedingsofspie50760000Adaptivescenebasednonunifmitycrectionmethodfinfraredfocalplane10.111712.487217.sht.
[963] [963] TRES S N, VERA E M, REEVES R A, et al. Scenebased nonunifmity crection method using constant range: Perfmance analysis[C]Proceedings of the 6th SCI, IX: 224–229.
[979] W FEI, W HAO, B YAOMING. Application of deep learning in computational imaging. Acta Optica Sinica, 40, 14(2020).
Get Citation
Copy Citation Text
Chao Zuo, Qian Chen. Computational optical imaging: An overview[J]. Infrared and Laser Engineering, 2022, 51(2): 20220110
Category: Special issue-Computational optical imaging technology
Received: Feb. 1, 2022
Accepted: --
Published Online: Mar. 21, 2022
The Author Email: