Chinese Journal of Lasers, Volume. 45, Issue 9, 911005(2018)

Research and Progress of Flow Field Diagnosis Based on Laser Absorption Spectroscopy

Kan Ruifeng*, Xia Huihui, Xu Zhenyu, Yao Lu, Ruan Jun, and Fan Xueli
Author Affiliations
  • [in Chinese]
  • show less
    References(98)

    [1] [1] Xu M H, Yan R, Zheng C G, et al. Status of trace element emission in a coal combustion process: a review[J]. Fuel Processing Technology, 2004, 85(2/3): 215-237.

    [2] [2] Fu G. Study on the emission characteristic of polycyclic aromatic hydorcarbons from coal combustion[D]. Hangzhou: Zhejiang University, 2002.

    [3] [3] Wang F, Xiao J F, Wang W, et al. Influence of combustion on pollutant discharge of gas turbines[J]. Thermal Power Generation, 2015, 44(5): 26-29.

    [4] [4] Flack R D. Fundamentals of jet propulsion with applications[M]. London: Cambridge University Press, 2005.

    [5] [5] Mohamed A, Rosier B, Henry D, et al. Tunable diode laser measurements on nitric oxide in a hypersonic wind tunnel[J]. AIAA Journal, 1996, 34(3): 494-499.

    [6] [6] Arimoto H, Takeuchi N, Mukaihara S, et al. Applicability of tdlas gas detection technique to combustion control and emission monitoring under harsh environment[J]. International Journal of Technology, 2011, 2(1): 1-9.

    [7] [7] Hiers R, MacKinnon H. Validation of stream thrust probes for direct-connect turbine engine testing[C]∥40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Fort Lauderdale, Florida, 11-14 July, 2004: 3547.

    [8] [8] Chen Y, Chen C. Rectification control points selection method of triangle mesh in optical pressure measurement of wind-tunnel test[J]. Review of Scientific Instruments, 2014, 85(8): 085108.

    [9] [9] Ehn A, Zhu J J, Li X S, et al. Advanced laser-based techniques for gas-phase diagnostics in combustion and aerospace engineering[J]. Applied Spectroscopy, 2017, 71(3): 341-366.

    [11] [11] Zhuang F C, Li M L, Zhao Y X, et al. Combustion diagnosis technology based on spectroscopy measurements[J]. Journal of the Academy of Equipment Command & Technology, 2002, 13(4): 32-36.

    [12] [12] Kaldvee B, Brackmann C, Ehn A, et al. Development of new laser-based concepts for diagnostic challenges in combustion research[C]∥Applications of Lasers for Sensing and Free Space Communications, Paris, France, 2013. LTh3B.

    [13] [13] Seitzman J M, Kychakoff G, Hanson R K. Instantaneous temperature field measurements using planar laser-induced fluorescence[J]. Optics Letters, 1985,10(9): 439-441.

    [14] [14] Yoo J, Mitchell D, Davidson D F, et al. Planar laser-induced fluorescence imaging in shock tube flows[J]. Experiments in Fluids, 2010, 49(4): 751-759.

    [15] [15] Barlow R S, Wang G H, Anselmo-Filho P, et al. Application of Raman/Rayleigh/LIF diagnostics in turbulent stratified flames[J]. Proceedings of the Combustion Institute, 2009, 32(1): 945-953.

    [16] [16] Limbach C M, Miles R B. Rayleigh scattering measurements of heating and gas perturbations accompanying femtosecond laser tagging[J]. AIAA Journal, 2017, 55(1): 112-120.

    [17] [17] Miles R B, Lempert W R, Forkey J N. Laser rayleigh scattering[J]. Measurement Science and Technology, 2001, 12(5): R33-R51.

    [18] [18] Cheng J X, Xie X S. Coherent anti-stokes Raman scattering microscopy: instrumentation, theory, and applications[J]. The Journal of Physical Chemistry B, 2004, 108(3): 827-840.

    [19] [19] Roy S, Gord J R, Patnaik A K. Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows[J]. Progress in Energyand Combustion Science, 2010, 36(2): 280-306.

    [20] [20] Yan F, Rinoshika A. Application of high-speed PIV and image processing to measuring particle velocity and concentration in a horizontal pneumatic conveying with dune model[J]. Powder Technology, 2011, 208(1): 158-165.

    [21] [21] Wang H L, Wang Y. Micro-PIV: a new development of particle image velocimetry[J]. Advances in Mechanics, 2005, 35(1): 77-90.

    [22] [22] Werle P. A review of recent advances in semiconductor laser based gas monitors[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 1998, 54(2): 197-236.

    [23] [23] Hanson R K, Jeffries J B. Advances in laser-based sensors for propulsion systems[C]. 24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, Portland, Oregon, June 2004. AIAA 2004-2476.

    [24] [24] Zeller W, Naehle L, Fuchs P, et al. DFB lasers between 760 nm and 16 μm for sensing applications[J]. Sensors, 2010, 10(4): 2492-2510.

    [25] [25] Allen M G. Diode laser absorption sensors for gas-dynamic and combustion flows[J]. Measurement Scienceand Technology, 1998, 9(4): 545-562.

    [26] [26] Schultz I A, Goldenstein C S, Jeffries J B, et al. Spatially-resolved TDLAS measurements of temperature, H2O column density, and velocity in a direct-connect scramjet combustor[C]. 52nd Aerospace Sciences Meeting, AIAA SciTech Forum, National Harbor, Maryland, 2014. AIAA 2014-1241.

    [27] [27] Chen X, Kan R F, Yang C G, et al. Precise measurement of air pressure using tunable diode laser absorption spectroscopy technology[J]. Journal of Optoelectronics Laser, 2015, 26(4): 719-723.

    [28] [28] Jia L Q, Liu W Q, Kan R F, et al. Oxygen mass flow detection method in supersonic flow based on TDLAS[J]. Acta Photonica Sinica, 2015, 44(7): 0730001.

    [29] [29] Jia L Q, Liu W Q, Kan R F, et al. Study on oxygen velocity measurement in wind tunnel by wavelength modulation- TDLAS technology[J]. Chinese Journal of Lasers, 2015, 42(7): 0715001.

    [30] [30] Yao L, Li H, Liu W Q, et al. Development of a rapid response miniaturized CO2 monitoring system based on TDLAS[C]∥National Conference on Environmental Optics, Hefei, Anhui, 2012.

    [31] [31] Yao L, Liu W Q, Kan R F, et al. Research and development of a compact TDLAS system to measure scramjet combustion temperature[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(1): 71-76.

    [33] [33] Jackson K, Gruber M, Buccellato S. HIFiRE flight 2 project overview and status update 2011[C]∥17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. 11-14 April, 2011, San Francisco, California, 2011: 2202.

    [34] [34] Bain, James R P. Near infrared tunable diode laser spectroscopy for aero engine related applications[D]. Glasgow: University of Strathclyde, 2012.

    [35] [35] Brown M, Barone D, Barhorst T, et al. TDLAS-based measurements of temperature, pressure, and velocity in the isolator of an axisymmetric scramjet[C]∥46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Nashville, TN, 2013. AIAA 2013-6989.

    [36] [36] Guo J X, Liu W H, Xu Z Y, et al. TDLAS-based measurements of temperaure and velocity in the combustor of scarmjet[C]∥Proceedings of 6th Asia Propulsion and Power International Conference, Xi′an, Beijing: China Engineering Thermophysics Society, 2012.

    [37] [37] Li F, Yu X L, Gu H, et al. Simultaneous measurements of multiple flow parameters for scramjet characterization using tunable diode-laser sensors[J]. Applied Optics, 2011, 50(36): 6697-6707.

    [38] [38] Sappey A D, Masterson P, Huelson E, et al. Results of closed-loop coal-fired boiler operation using a TDLAS sensor and smart process control software[J]. Combustion Science and Technology, 2011, 183(11): 1282-1295.

    [39] [39] Zhang Y W. Molecular spectroscopy[M]. Hefei: Press of University of Science and Technology of China, 1988.

    [40] [40] Li H. Near-infrared diode laser absorption spectroscopy with applications to reactive systems and combustion control[D]. Palo Alto: Stanford University, 2007.

    [41] [41] Rothman L S, Gordon I E, Babikov Y, et al. The HITRAN2012 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2013, 130(11): 4-50.

    [42] [42] Xu Z Y. Research on temperature measurement and 2D distribution for transient combustion process by infrared absorption spectroscopy[D]. Hefei: University of Chinese Academy of Sciences, 2012.

    [43] [43] Lins B, Zinn P, Engelbrecht R, et al. Simulation-based comparison of noise effects in wavelength modulation spectroscopy and direct absorption TDLAS[J]. Applied Physics B, 2010, 100(2): 367-376.

    [44] [44] Nagali V, Chou S I, Baer D S, et al. Tunable diode-laser absorption measurements of methane at elevated temperatures[J]. Applied Optics, 1996, 35(21): 4026.

    [45] [45] Tang Y Y, Liu W Q, Kan R F, et al. Direct absorption measurement of ambient nitric oxide based on room-temperature pulsed quantum cascade laser[J]. Proceedings of SPIE, 2010, 7656: 76565F

    [46] [46] Duan J H, Jin X, Wang G Y, et al. Measurement of gas pressure based on direct absorption spectroscopy[J]. Physics Experimentation, 2016, 36(4): 7-11.

    [47] [47] Yang B, Pan K W, Yang H N, et al. Discussion on the application of combustion diagnostics by wavelength scanning direct absorption spectrometry[J]. Journal of University of Shanghai for Science and Technology, 2015(5): 445-449.

    [48] [48] Cai T, Wang G, Jia H, et al. Temperature and water concentration measurements in combustion gases using a DFB diode laser at 1.4 μm[J]. Laser Physics, 2008, 18(10): 1133-1142.

    [49] [49] He Q, Dang P, Liu Z, et al. TDLAS-WMS based near-infrared methane sensor system using hollow-core photonic crystal fiber as gas-chamber[J]. Optical & Quantum Electronics, 2017, 49(3): 115.

    [50] [50] Liu J T C, Jeffries J B, Hanson R K. Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows[J]. Applied Physics B, 2004, 78(3/4): 503-511.

    [53] [53] Wei M, Liu J G, Kan R F, et al. Open-path detection of atmospheric CH4 and N2O based on quantum cascade laser[C]∥Optical Instrumentation for Energy and Environmental Applications 2014, Canberra, Australia, 2014. Eth3A.3

    [54] [54] He J F, Kan R F, Xu Z Y, et al. Derivative spectrum and concentration inversion algorithm of tunable diode laser absorption spectroscopy oxygen measurement[J]. Acta Optica Sinica, 2014, 34(4): 0430003.

    [56] [56] Goldenstein C S, Strand C L, Schultz I A, et al. Fitting of calibration-free scanned-wavelength-modulation spectroscopy spectra for determination of gas properties and absorption lineshapes[J]. Applied Optics, 2014, 53(3): 356-367.

    [57] [57] Qu Z C, Ghorbani R, Valiev D, et al. Calibration-free scanned wavelength modulation spectroscopy: application to H2O and temperature sensing in flames[J]. Optics Express, 2015, 23(12): 16492.

    [58] [58] Sun K, Chao X, Sur R, et al. Analysis of calibration-free wavelength-scanned wavelength modulation spectroscopy for practical gas sensing using tunable diode lasers[J]. Measurement Science and Technology, 2013, 24(12): 125203.

    [59] [59] Wei M, Kan R F, Chen B, et al. Calibration-free wavelength modulation spectroscopy for gas concentration measurements using a quantum cascade laser[J]. Applied Physics B, 2017, 123(5):149.

    [60] [60] Krishna Y, O′Byrne S. Tunable diode laser absorption spectroscopy as a flow diagnostic tool: a review[J]. Journal of the Indian Institute of Science, 2016, 96(1): 17-28.

    [61] [61] Rieker G B, Jeffries J B, Hanson R K. Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments[J]. Applied Optics, 2009, 48(29): 5546-5560.

    [62] [62] Yao L, Yao D L, Yi J H, et al. Measurement Method of Plume Velocity for Solid Propellant Charge Based on TDLAS[J]. Chinese Journal of Explosives & Propellants, 2016, 39(5): 35-39.

    [63] [63] Zhang L, Liu J G, Kan R F, et al. High velocity airflow measurement method based on tunable semiconductor laser absorption spectroscopy[J]. Acta Physica Sinica, 2012, 61(3): 034214.

    [64] [64] Liu X, Hanson R K. A line-of sight absorption of H2O vapor gas temperature sensing in uniform and nonuniform flows[D]. Palo Alto: Stanford University, 2006.

    [65] [65] Hanson R K. Advances in tunable diode laser absorption spectroscopy (TDLAS) for measurements of gas properties in combustion systems[C]∥CLEO: Science and Innovations. Optical Society of America, 2015: STh4O. 1.

    [66] [66] Lyle K H, Jeffries J B, Hanson R K, et al. Diode-laser sensor for air-mass flux 2: nonuniform flow modeling and seroengine tests[J]. AIAA Journal, 2007, 45(9): 2213-2223.

    [67] [67] Ma L, Li X S, Sanders S T, et al. 50-kHz-rate 2D imaging of temperature and H2O concentration at the exhaust plane of a J85 engine using hyperspectral tomography[J]. Optics Express, 2013, 21(1): 1152-1162.

    [68] [68] Yang B, He G Q , Liu P J, et al. TDLAS-based measurements of parameters for incoming flow hot-firing test of air-breathing rocket engine[J]. Chinese Jounal of Lasers, 2011, 38(5): 0508006.

    [69] [69] Song J L, Hong Y J, Wang G Y, et al. Measurement of supersonic flow parameters using laser absorption spectroscopy[J]. Infrared and Laser Engineering, 2014, 43(11): 3510-3515.

    [71] [71] Liu C, Xu L, Chen J, et al. Development of a fan-beam TDLAS-based tomographic sensor for rapid imaging of temperature and gas concentration[J]. Optics Express, 2015, 23(17): 22494-22511.

    [72] [72] Chen D, Liu W Q, Zhang Y J, et al. Successive measurement of atmospheric ammonia in urban area of Beiiing using open-path TDLAS system[J]. Optical technique, 2007, 33(2): 311-314.

    [73] [73] Kan R F, Liu W Q, Zhang Y J, et al. High sensitive laser absorption spectrometer using in greenhouse gas monitoring[C]∥The 17th Laser Conference Proceedings, Mianyang, Sichuan, 2005.

    [75] [75] Yao L, Liu W Q, Liu J G, et al. Research on open-path detection for atmospheric trace gas CO based on TDLAS[J]. Chinese Journal of Lasers, 2015, 42(2): 0215003.

    [76] [76] Xu Z Y, Kan R F, Ruan J, et al. A tunable diode laser absorption based velocity sensor for local field in hypersonic flows[C]∥Optics and Photonics for Energy and the Environment, 2016.

    [77] [77] Chen J Y, Liu J G, He Y B, et al. Study of CO2 spectroscopic parameters at high temperature near 2.0 μm[J]. Acta Physica Sinica, 2013, 62(22): 224206.

    [78] [78] Nie W, Kan R F, Xu Z Y, et al. Measurements of line strengths for some lines of ammonia in 6611-6618 cm-1[J]. Acta Physica Sinica, 2017, 66(5): 054207.

    [79] [79] Nie W, Kan R F, Xu Z Y, et al. Measuring spectral parameters of water vapor at low temperature based on tunable diode laser absorption spectroscopy[J]. Acta Physica Sinica, 2017, 66(20): 204204.

    [80] [80] Xu Z Y, Liu W Q, Liu J G, et al. Temperature measurements based on tunable diode laser absorption specctroscopy[J]. Acta Physica Sinica, 2012, 61(23): 234204.

    [81] [81] Dai B, Ruan J, Xu Z Y, et al. Measurement of combustor exit temperature field based on tunable diode laser absorption spectroscopy technology[J]. Gas Turbine Experiment and Research, 2015, 28(4): 49-56.

    [82] [82] Martin E, Goyne C, Diskin G. Analysis of a tomography technique for a scramjet wind tunnel[J]. International Journal of Hypersonics, 2010, 1(3): 173-180.

    [83] [83] Villarreal R, Varghese P L. Frequency-resolved absorption tomography with tunable diode lasers[J]. Applied Optics, 2005, 44(31): 6786.

    [84] [84] Xia H H, Kan R F, Xu Z Y, et al. Two-step tomographic reconstructions of temperature and species concentration in a flame based on laser absorption measurements with a rotation platform[J]. Optics and Lasers in Engineering, 2017, 90: 10-18.

    [85] [85] Xia H H, Kan R F, Liu J G, et al. Analysis of algebraic reconstruction technique for accurate imaging of gas temperature and concentration based on tunable diode laser absorption spectroscopy[J]. Chinese Physics B, 2016, 25(6): 064205.

    [86] [86] Bryner E, Diskin G S, Goyne C P, et al. Developement of an infrared laser absorption tomography system for a sramjet combustor[C]∥25th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, San Francisco, California, 2006. AIAA 2006-3445.

    [87] [87] Llacer J, Meng J D. Matrix-based image reconstruction methods for tomography[C]∥Nuclear Science Symposium, Orlando, FL, USA, 31 Oct. 1984.

    [88] [88] Ma L, Cai W W, Caswell A W, et al. Tomographic imaging of temperature and chemical species based on hyperspectral absorption spectroscopy[J]. Optics Express, 2009, 17(10): 8602-8613.

    [90] [90] Zhang G L, Liu J G, Xu Z Y, et al. Characterization of temperature non-uniformity over a premixed CH4-air flame based on line-of-sight TDLAS[J]. Applied Physics B, 2016, 122(1): 3.

    [91] [91] Sun K, Chao X, Sur R, et al. Wavelength modulation diode laser absorption spectroscopy for high-pressure gas sensing[J]. Applied Physics B, 2013, 110(4): 497-508.

    [92] [92] Sun K, Sur R, Jeffries J B, et al. Application of wavelength-scanned wavelength-modulation spectroscopy H2O absorption measurements in an engineering-scale high-pressure coal gasifier[J]. Applied Physics B, 2014, 117(1): 411-421.

    [93] [93] An X L, Kraetschmer T, Takami K, et al. Validation of temperature imaging by H2O absorption spectroscopy using hyperspectral tomography in controlled experiments[J]. Applied Optics, 2011, 50(4): A29-A37.

    [94] [94] Kaminski C F. A tomographic technique for the simultaneous imaging of temperature, chemical species, and pressure in reactive flows using absorption spectroscopy with frequency-agile lasers[J]. Applied Physics Letters, 2014, 104(3): 034101.

    [95] [95] Dong L, Tittel F K, Li C, et al. Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing[J]. Optics Express, 2016, 24(6): A528-A535.

    [96] [96] Li C, Dong L, Zheng C, et al. Compact TDLAS based optical sensor for ppb-level ethane detection by use of a 3.34 μm room-temperature CW interband cascade laser[J]. Sensors and Actuators B: Chemical, 2016, 232: 188-194.

    [97] [97] Spearrin R M, Goldenstein C S, Schultz I A, et al. Simultaneous sensing of temperature, CO, and CO2 in a scramjet combustor using quantum cascade laser absorption spectroscopy[J]. Applied Physics B, 2014, 117(2): 689-698.

    [98] [98] Sappey A, McCormick P, Masterson P, et al. Development of a flight-worthy TDLAS-based oxygen sensor for HIFiRE-1[C]. 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Denver, Colorado, 2009. AIAA 2009-4971.

    Tools

    Get Citation

    Copy Citation Text

    Kan Ruifeng, Xia Huihui, Xu Zhenyu, Yao Lu, Ruan Jun, Fan Xueli. Research and Progress of Flow Field Diagnosis Based on Laser Absorption Spectroscopy[J]. Chinese Journal of Lasers, 2018, 45(9): 911005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Apr. 2, 2018

    Accepted: --

    Published Online: Sep. 8, 2018

    The Author Email: Ruifeng Kan (kanruifeng@aiofm.ac.cn)

    DOI:10.3788/cjl201845.0911005

    Topics