NUCLEAR TECHNIQUES, Volume. 46, Issue 12, 120602(2023)

Uncertainty quantification methodology for model parameters in sub-channel codes using MCMC sampling

Xin HE1, Meiqi SONG1、**, and Xiaojing LIU1,2、*
Author Affiliations
  • 1College of Smart Energy, Shanghai Jiao Tong University, Shanghai 200240, China
  • 2School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    Figures & Tables(11)
    Flowchart of uncertainty analysis
    Comparison between the experimental and calculated void fraction values
    Error decline curve when establishing the BPNN surrogate model
    Sample path of the adaptive Metropolis algorithm (a) Random-walk samples from s, (b) Random-walk samples from β
    Frequency histogram of 20 000 iteration samples (a) Frequency histogram of s, (b) Frequency histogram of β
    Envelop test for 95% confidence interval (a) Void fraction at 2 669 mm, (b) Void fraction at 3 177 mm
    Calibration resultsof the two modified model parameters (a) Void fraction at 2 669 mm, (b) Void fraction at 3 177 mm
    • Table 1. Proposed parameters for adaptive encryption

      View table
      View in Article

      Table 1. Proposed parameters for adaptive encryption

      迭代次数Iteration timesμx1proμx2proσx1proσx2prog(μx1pro, μx2pro)
      0220.10.143.061 8
      12.060 339 782.161 652 620.194 794 500.183 065 9724.478 4
      22.293 104 122.613 720 110.290 378 640.175 015 9910.389 2
      32.533 876 103.096 206 720.443 189 610.162 979 612.439 26
      42.913 810 263.537 998 590.340 335 160.132 918 880.587 00
      53.076 087 013.778 482 200.515 250 260.180 676 640.002 125
      63.019 567 734.001 705 070.404 149 850.285 124 678.715 76
    • Table 2. Uncertainty distribution of boundary condition parameters

      View table
      View in Article

      Table 2. Uncertainty distribution of boundary condition parameters

      编号No.相关参数Related parameter均值Mean value标准差Standard deviation / %
      1压力Pressure00.333
      2入口温度Inlet temperature00.133
      3质量流量Mass flow00.5
      4热流密度Heat flux00.333
      5功率分布Power distribution01
    • Table 3. Parameters proposed by adaptive algorithm iterations

      View table
      View in Article

      Table 3. Parameters proposed by adaptive algorithm iterations

      迭代次数Iteration timesμsproμβproσsproσβprog(μx1pro, μx2pro)
      0000.10.1267.606
      10.326 361 55-0.121 673 840.101 055 540.146 140 04230.899
      20.540 180 390.001 248 390.153 653 070.267 939 87241.762
    • Table 4. Uncertainty distribution of the mean and standard variance for the model parameters

      View table
      View in Article

      Table 4. Uncertainty distribution of the mean and standard variance for the model parameters

      模型参数Model parameter均值Mean value标准差Standard deviation
      滑速比Slip ratio0.498 850 360.187 062 32
      湍流交混系数Turbulent mixing parameter0.041 123 490.500 499 95
    Tools

    Get Citation

    Copy Citation Text

    Xin HE, Meiqi SONG, Xiaojing LIU. Uncertainty quantification methodology for model parameters in sub-channel codes using MCMC sampling[J]. NUCLEAR TECHNIQUES, 2023, 46(12): 120602

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jun. 1, 2023

    Accepted: --

    Published Online: Mar. 7, 2024

    The Author Email: SONG Meiqi (宋美琪), LIU Xiaojing (刘晓晶)

    DOI:10.11889/j.0253-3219.2023.hjs.46.120602

    Topics