Photonics Insights, Volume. 4, Issue 3, R07(2025)

Mid-IR fluoride fibers: materials, fabrication, and fiber laser applications

Shunbin Wang1, Shijie Jia2, Yiguang Jiang3, Long Zhang3、*, Pengfei Wang4,5、*, and Yichun Liu4,5
Author Affiliations
  • 1Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, China
  • 2College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, China
  • 3Infrared Optical Materials Research Center, Advanced Laser and Optoelectronic Functional Materials Department, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China
  • 4School of Physics, Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun, China
  • 5State Key Laboratory of Integrated Optoelectronics, Northeast Normal University, Changchun, China
  • show less
    Figures & Tables(37)
    Overall characteristics and applications of fluoride fibers.
    Glass-forming region in (a) ZrF4−BaF2−NaF ternary systems, (b) ZrF4−BaF2−LaF3 ternary systems stabilized by 4% AlF3, and (c) ZrF4−BaF2−NaF ternary systems stabilized by 4% AlF3[42].
    Glass-forming region in (a) AlF3−SrF2−MgF2−YF3 system[66], (b) AlF3−RF2−YF3 system[67], and (c) AlF3−YF3−PbF2 system[78].
    Transmission spectra of several fluoride glass.
    Transmission spectra of (a) ZBLAN and (b) ZBYA glass before and after immersing in deionized water. (c) Spectral comparison of ZBLAN and ZBYA glass samples after 24 h immersion in deionized water. (d) Weightlessness comparison of ZBLAN and ZBYA glass samples after immersing in deionized water[126] (Copyright © 2022 Optica Publishing Group).
    Transmission spectra of the typical fluoroaluminate glass before immersion and after drying[128].
    Transmission spectra of core glass before and after immersing in water[129].
    Hot-jointing.
    Built-in casting method: (a) traditional built-in casting, (b) rotational casting, (c) jacketing, (d) modified built-in casting, (e) lifting, and (f) suction casting.
    (a) Rod-in-tube and (b) extrusion.
    Structure of fiber drawing tower.
    (a) Double crucible fiber drawing and (b) single crucible fiber drawing.
    Schematic diagrams of resonators used for fiber lasers with (a) single-end co-propagating pump, (b) single-end counter-propagating pump, (c) dual end pumps, and (d) monolithic all-fiber cavity.
    Energy level structures of (a) Er3+, (b) Ho3+, and (c) Dy3+ ions.
    Published laser power from RE-doped fiber laser as a function of operating wavelength[206–218" target="_self" style="display: inline;">–218].
    Experimental setups for the high-power heavily Er3+-doped ZBLAN double-clad fiber laser. (a) Experimental setup of the 10-W-level fluoride fiber laser at 2.78 µm[223] (Copyright © 2006 Optical Society of America). (b) Experimental setup of the cascade laser operating at ∼2.8 and ∼1.6 µm[227] (Copyright © 2017 Optical Society of America). (c) Experimental setup of the 42 W fluoride fiber laser at 2.824 µm[228] (Copyright © 2018 Optical Society of America).
    Experimental setups for the Ho3+/Pr3+-doped fluoroaluminate fiber lasing at ∼2.9 μm. (a) Experimental setup of the 173 mW fluoroaluminate glass fiber laser at 2.866 µm[230] (Copyright © 2020 Optical Society of America). (b) Experimental setup of the tunable Ho3+/Pr3+ co-doped AlF3 fiber laser operating at λ∼2.842–2.938 μm[231] (Copyright © 2021 Optical Society of America). (c) Experimental setup of the 2.86 µm fiber laser with a fiber Bragg grating high reflector (HR) and Fresnel-reflection output coupler (LR)[233] (Copyright © 2022 Optical Society of America).
    Schematic of the mid-infrared fiber laser system developed by Tianjin University. (a) Experimental setup of the 33.8 W fluoride fiber laser at 2.87 µm[236]. (b) Experimental schematic of the all-fiber low-feedback 2.8 µm Er-doped ZBLAN fiber laser[239] (Copyright © 2025 Optical Society of America).
    (a) Schematic diagram of the resonantly pumped Dy3+ dope ZBLAN fiber laser[240] (Copyright © 2016 Optical Society of America) and (b) experimental setup of the 10-W-level Dy-doped fluoride fiber laser at 3.24 µm[242] (Copyright © 2019 Optical Society of America).
    (a) Energy-level diagram of erbium-doped ZBLAN showing the pumping scheme for a typical mid-IR lasing transition that is pumped using the conventional technique and the DWP concept[251] (Copyright © 2014 Optical Society of America). (b) Experimental setup of the monolithic DWP Er3+:ZrF4 fiber laser (HR-FBG, high-reflectivity FBG; LR-FBG, low-reflectivity FBG)[254] (Copyright © 2017 Optical Society of America). (c) Experimental setup of the 3.55 µm Er3+:ZrF4 DWP all-fiber laser system[259] (Copyright © 2022 Optical Society of America).
    3.5 µm laser of 16.4 W from Er-doped fluoride fiber. (a) Experimental setup, (b) 3.5 µm output power curve, and (c) 3.5 µm laser spectrum[264].
    (a) 3920 nm laser cavity layout with 1.7 W output, (b) silica-to-ZrF4, and (c) ZrF4-to-InF3 splices. (d) Cross section of the Ho3+:InF3 fiber[267] (Copyright © 2024 Optical Society of America) and (e) experimental setup of the 3.8 µm monolithic Er3+:ZrF4 DWP all-fiber laser system[268].
    Schematic setup for SC generation[270].
    Supercontinuum laser system pumped by noise-like pulses. (a) Experimental setup, (b) output spectrum evolution with pump power, (c) output power, and (d) power conversion efficiency versus pump power at different pulse widths[277] (Copyright © 2023 Optical Society of America).
    Supercontinuum laser based on 1.9–4.9 µm InF3 fiber. (a) Experimental setup, (b) supercontinuum spectrum based on InF3 fiber, and (c) SC power with respect to the output power of the SMF2[280] (Copyright © 2020 Optical Society of America).
    Absorption strength of some typical trace gas molecules in the mid-infrared range[295].
    Absorption spectrum of water molecules[302].
    Transmission efficiency of indium fluoride fiber under experimental conditions[345].
    • Table 1. Maximum Phonon Energy of Fluoride Glass

      View table
      View in Article

      Table 1. Maximum Phonon Energy of Fluoride Glass

      GlassFluorozirconate glassFluoroaluminate glassFluoroindate glass
      Maximum phonon energy (cm1)550–600600–650480–520
    • Table 2. Typical Compositions and Thermal Characteristic Temperatures of Fluoride Glasses

      View table
      View in Article

      Table 2. Typical Compositions and Thermal Characteristic Temperatures of Fluoride Glasses

      Type of glassNominal components [% (mole fraction)]Tg (°C)ΔT (°C)Ref.
      Fluorozirconate glass20ZrF410ZnF220AlF35YF310BaF235LiF32072[119]
      20ZrF410ZnF220AlF35YF310BaF230LiF5KF250140[119]
      57ZrF434BaF25LaF33AlF331682[120]
      53ZrF420BaF24LaF33AlF320NaF26880[121]
      50ZrF433BaF210YF37AlF334075[122]
      Fluoroaluminate glass30.2AlF310.6BaF220.2CaF28.3YF313.2SrF23.5MgF210.2ZrF43.8NaF393135[123]
      30AlF315BaF220YF325PbF210MgF2367138[78]
      30AlF310BaF215CaF215YF320PbF25MgF2365125[78]
      37AlF312BaF215CaF215YF39SrF212MgF2426126[124]
      35AlF310BaF220CaF215YF310SrF210MgF242881[88]
      Fluoroindate glass50InF310BaF240YF333383[125]
      40InF320BaF220SrF220ZnF230187[98]
      40InF315BaF220SrF25CaF220ZnF229291[98]
      30InF315BaF220SrF230ZnF25NaF29189[98]
      15InF320GaF315ZnF230PbF220CdF2248112[125]
    • Table 3. Comparison of Properties of Several Classic Fluoride Glasses*

      View table
      View in Article

      Table 3. Comparison of Properties of Several Classic Fluoride Glasses*

      Type of glassFluorozirconate glassFluoroaluminate glassFluoroindate glass
      ComponentZBYAZBLANABCYSMAZYSBABCYSMLZIZBGSPLYL
      v0.220.310.310.230.295
      α (106/K)19.417.215.6619.1217.4520.93
      E (Gpa)55.958.372.7467.926157.07
      σF (Mpa·m1/2)0.450.320.5740.80.440.219
      Rs (W/m1/2)0.1970.1380.3670.3200.2960.219
      Ref.[126][126,127][128][79][128][129]
    • Table 4. Water Immersion Results for Typical Fluoride Glass

      View table
      View in Article

      Table 4. Water Immersion Results for Typical Fluoride Glass

      Type of glassFluorozirconate glassFluoroaluminate glassFluoroindate glass
      ComponentZBLANZBYAAYFIZBGSLPN
      Weight loss (%)2.0030.790.0270.12
      T3000nm (%) before immersion90.891.194.5
      T3000nm (%) after drying013.991.7
      Ref.[126][126][128][129]
    • Table 5. Key Properties of Fluorozirconate, Fluoroaluminate, and Fluoroindate Glasses

      View table
      View in Article

      Table 5. Key Properties of Fluorozirconate, Fluoroaluminate, and Fluoroindate Glasses

      PropertyFluorozirconate (e.g., ZBLAN)Fluoroaluminate (e.g., AYF)Fluoroindate (e.g., IZBGSPLYL)
      Typical compositionZrF4BaF2LaF3AlF3NaFAlF3BaF2CaF2YF3SrF2MgF2InF3ZnF2BaF2GaF3SrF2LiFYF3LaF3
      Maximum phonon energy (cm1)580590420
      Infrared cut-off edge band (μm)98.511
      Thermal stability Tg/ΔTModerate 260/98High 425/78Low to moderate 260/79
      Chemical durabilityModerate (prone to hydrolysis)High (resistant to moisture)Low to moderate (improved with GaF3)
      Rare-earth solubilityHigh (Er3+, Ho3+, and Dy3+)Moderate (limited by Al3+ coordination)High (In3+ accommodates RE ions)
      Fabrication challengeCrystallization during coolingHigh melting temperatures (>1,200°C)Volatility of InF3 during melting
      Primary applicationMid-IR fiber lasers (2.7–3.8 µm)High-power lasers, harsh environmentsExtended mid-IR lasers (3–5 µm)
    • Table 6. Performance Parameters of Typical Commercial Fluoride Fibers

      View table
      View in Article

      Table 6. Performance Parameters of Typical Commercial Fluoride Fibers

      CompanyFiberlabsThorlabsLe Verre Fluoré
      FiberFluoroaluminateZBLANZBLANFluoroindateZBLANFluoroindate
      Transmission range (μm)0.35–3.50.3–40.29–4.50.3–5.50.3–4.30.3–5.5
      Core index1.461.51
      Core diameter (μm)2009996.516
      Numerical aperture0.220.16–0.260.190.260.08–0.350.2
      Fiber loss (dB · m−1)<0.1@2.9  µm0.3@4 µm<0.2@2.33.6  μm<0.45@3.24.6  μm0.05@0.33.4  μm0.2@3.44.0  μm
      RE-doped fiber loss (dB · m−1)Er3+-doped 0.3@2.0 µmEr3+-doped 0.2@2.0 µmHo3+-doped 0.7@1.5 µm 0.3@3.0 µm
      Core deviation (%)<5.0<11.1<5.6<5.6
    • Table 7. Summary of the Literature on continuous-wave (CW) Mid-IR 2.7–3.0 µm Fluoride Fiber Lasers

      View table
      View in Article

      Table 7. Summary of the Literature on continuous-wave (CW) Mid-IR 2.7–3.0 µm Fluoride Fiber Lasers

      λOutput (μm)λPump (nm)Slope efficiency (%)Output powerYearFiber hostRef.
      2.714476.5250 µW1988Er3+:ZBLAN[219]
      2.79970251.04 W1999Er3+:ZBLAN[222]
      2.78597521.39 W2006Er3+:ZBLAN[223]
      2.9389802230.5 W2015Er3+:ZBLAN[226]
      2.8259765013 W2017Er3+:ZBLAN[227]
      2.82498022.941.6 W2018Er3+:ZBLAN[228]
      2.83898015.235 W2019Er3+:ZBLAN[229]
      2.9115010.4173 mW2020Ho3+/Pr3+:AlF3[230]
      2.84115010.31.13 W2021Ho3+/Pr3+:AlF3[231]
      2.8 (quasi-CW)9762970 W2021Er3+:ZBLAN[232]
      2.863115017.71.006 W2021Ho3+/Pr3+:AlF3[233]
      2.91150242.16 W2022Ho3+/Pr3+:ZBYA[126]
      2.8172023.7660 mW2022Er3+:ZBLAN[234]
      2.864115021.141.35 W2022Ho3+/Pr3+:InF3[235]
      2.8797626.433.8 W2023Er3+:ZBLAN[236]
      2.861642+53.71.65 W2024Ho3+:InF3[237]
      1976
      2.866115029.34.25 W2024Ho3+/Pr3+:AlF3[238]
      2.871150295.82 W2024Ho3+:AlF3[128]
      2.897622.112.5 W2025Er3+:ZBLAN[239]
    • Table 8. Summary of the Literature on CW Mid-IR 3.5  µm Fluoride Fiber Lasers

      View table
      View in Article

      Table 8. Summary of the Literature on CW Mid-IR 3.5  µm Fluoride Fiber Lasers

      λOutput (μm)λPump (nm)Slope efficiency (%)Output powerYearInstitutionRef.
      3.4565338.5 mW1991Technische Universität Braunschweig[249]
      3.5974 + 19736.540 mW2013The University of Adelaide[250]
      3.604985 + 197316260 mW2014The University of Adelaide[251]
      3.5985 + 197327.3370 mW2015The University of Adelaide[252]
      3.44974 + 1976191.5 W2015Laval University[253]
      3.55976 + 197626.45.6 W2017Laval University[254]
      3.68970 + 197325.140.62 W2017Shanghai Jiao Tong University[255]
      3.42976 + 197638.63.4 W2019Laval University[256]
      3.5976 + 1973481.72 W2019Hunan University[257]
      3.5655 + 198131.51.72 W2021University of Electronic Science and Technology of China[258]
      3.55980 + 197651.314.9 W2021Laval University[259]
      3.54976 + 197310.332.32 W2022Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences[260]
      3.565910.70.95 W2022University of Electronic Science and Technology of China[261]
      3.471990367.2 W2023Tianjin University[262]
      2.8/3.6980 + 11506.90.96 W/0.32 W2024Harbin Engineering University[263]
      3.46976 + 199037.816.4 W2024Tianjin University[264]
      3.549981 + 197641.710.1 W2024Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences[265]
    • Table 9. Research Progress of Supercontinuum Lasers Based on Fluoride Fibers

      View table
      View in Article

      Table 9. Research Progress of Supercontinuum Lasers Based on Fluoride Fibers

      FiberPump laser wavelength (μm)Supercontinuum spectrum range (μm)Output power (W)Ref.
      ZBLAN1.540.8–4.010.5[272]
      1.9–2.61.90–3.3530[273]
      1.9–2.62.0–4.120.6[274]
      1.9–2.41.9–4.05.4[275]
      21.90–3.6833.1[277]
      Fluoroindate2.752.4–5.4[278]
      1.8–2.61–51[279]
      1.9–2.61.9–4.911.8[280]
    Tools

    Get Citation

    Copy Citation Text

    Shunbin Wang, Shijie Jia, Yiguang Jiang, Long Zhang, Pengfei Wang, Yichun Liu, "Mid-IR fluoride fibers: materials, fabrication, and fiber laser applications," Photon. Insights 4, R07 (2025)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Review Articles

    Received: Apr. 29, 2025

    Accepted: Jun. 24, 2025

    Published Online: Aug. 1, 2025

    The Author Email: Long Zhang (lzhang@siom.ac.cn), Pengfei Wang (pfwang@nenu.edu.cn)

    DOI:10.3788/PI.2025.R07

    CSTR:32396.14.PI.2025.R07

    Topics