Journal of Synthetic Crystals, Volume. 51, Issue 6, 1132(2022)

Research Progress on Synthesis of Ternary Layered MAX Phase Ceramics by Molten Salt Method

ZHANG Bin, HU Qianku, LI Dandan, WANG Libo, and ZHOU Aiguo
Author Affiliations
  • [in Chinese]
  • show less
    References(57)

    [1] [1] JEITSCHKO W, NOWOTNY H, BENESOVSKY F. Die H-phasen Ti2 InC, Zr2 InC, Hf2 InC und Ti2 GeC[J]. Monatshefte Für Chemie, 1963, 94(6): 1201-1205.

    [2] [2] BARSOUM M. A new class of solids: thermodynamically stable nanolaminates [J]. Progress in Solid State Chemistry, 2000, 28(1): 201.

    [3] [3] NAGUIB M, MASHTALIR O, CARLE J, et al. Two-dimensional transition metal carbides[J]. ACS Nano, 2012, 6(2): 1322-1331.

    [4] [4] ER D Q, LI J W, NAGUIB M, et al. Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(14): 11173-11179.

    [5] [5] FU L, XIA W. MAX phases as nanolaminate materials: chemical composition, microstructure, synthesis, properties, and applications[J]. Advanced Engineering Materials, 2021, 23(4): 2001191.

    [10] [10] HAJAS D E, BABEN M T, HALLSTEDT B, et al. Oxidation of Cr2AlC coatings in the temperature range of 1 230 to 1 410 ℃[J]. Surface and Coatings Technology, 2011, 206(4): 591-598.

    [11] [11] TALLMAN D J, ANASORI B, BARSOUM M W. A critical review of the oxidation of Ti2AlC, Ti3AlC2 and Cr2AlC in air[J]. Materials Research Letters, 2013, 1(3): 115-125.

    [12] [12] FENG Z J, KE P L, HUANG Q, et al. The scaling behavior and mechanism of Ti2AlC MAX phase coatings in air and pure water vapor[J]. Surface and Coatings Technology, 2015, 272: 380-386.

    [13] [13] TALLMAN D J, HE L F, GARCIA-DIAZ B L, et al. Effect of neutron irradiation on defect evolution in Ti3SiC2 and Ti2AlC[J]. Journal of Nuclear Materials, 2016, 468: 194-206.

    [14] [14] WANG C, YANG T, TRACY C L, et al. Disorder in Mn+1AXn phases at the atomic scale[J]. Nature Communications, 2019, 10: 622.

    [15] [15] RESTER M, NEIDHARDT J, EKLUND P, et al. Annealing studies of nanocomposite Ti-Si-C thin films with respect to phase stability and tribological performance[J]. Materials Science and Engineering: A, 2006, 429(1/2): 90-95.

    [16] [16] ZHANG J, WANG J Y, ZHOU Y C. Structure stability of Ti3AlC2 in Cu and microstructure evolution of Cu-Ti3AlC2 composites[J]. Acta Materialia, 2007, 55(13): 4381-4390.

    [17] [17] WANG D D, TIAN W B, MA A B, et al. Anisotropic properties of Ag/Ti3AlC2 electrical contact materials prepared by equal channel angular pressing[J]. Journal of Alloys and Compounds, 2019, 784: 431-438.

    [18] [18] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23(37): 4248-4253.

    [19] [19] HADI M A, ALI M S, NAQIB S H, et al. Band structure, hardness, thermodynamic and optical properties of superconducting Nb2AsC, Nb2InC and Mo2GaC[J]. International Journal of Computational Materials Science and Engineering, 2013, 2(2): 1350007.

    [20] [20] HADI M A, RAYHAN M A, NAQIB S H, et al. Structural, elastic, thermal and lattice dynamic properties of new 321 MAX phases[J]. Computational Materials Science, 2019, 170: 109144.

    [21] [21] XU Q, ZHOU Y C, ZHANG H M, et al. Theoretical prediction, synthesis, and crystal structure determination of new MAX phase compound V2SnC[J]. Journal of Advanced Ceramics, 2020, 9(4): 481-492.

    [22] [22] ZHU J F, GAO J Q, YANG J F, et al. Synthesis and microstructure of layered-ternary Ti2AlC ceramic by high energy milling and hot pressing[J]. Materials Science and Engineering: A, 2008, 490(1/2): 62-65.

    [23] [23] GAUTHIER-BRUNET V, CABIOC’H T, CHARTIER P, et al. Reaction synthesis of layered ternary Ti2AlC ceramic[J]. Journal of the European Ceramic Society, 2009, 29(1): 187-194.

    [24] [24] TIAN W B, SUN Z M, DU Y L, et al. Synthesis reactions of Cr2AlC from Cr-Al4C3-C by pulse discharge sintering[J]. Materials Letters, 2008, 62(23): 3852-3855.

    [25] [25] RACAULT C, LANGLAIS F, NASLAIN R. Solid-state synthesis and characterization of the ternary phase Ti3SiC2[J]. Journal of Materials Science, 1994, 29(13): 3384-3392.

    [26] [26] SCHNEIDER J M, SUN Z M, MERTENS R, et al. Ab initio calculations and experimental determination of the structure of Cr2AlC[J]. Solid State Communications, 2004, 130(7): 445-449.

    [27] [27] OPACISKI M, PUSZYNSKI J, LIS J. Synthesis of ternary titanium aluminum carbides using self-propagating high-temperature synthesis technique[J]. Journal of the American Ceramic Society, 2001, 84(12): 3051-3053.

    [28] [28] YEH C L, SHEN Y G. Effects of using Al4C3 as a reactant on formation of Ti3AlC2 by combustion synthesis in SHS mode[J]. Journal of Alloys and Compounds, 2009, 473(1/2): 408-413.

    [29] [29] YANG C, JIN S Z, LIANG B Y, et al. Synthesis of Ti3AlC2 ceramic by high-energy ball milling of elemental powders of Ti, Al and C[J]. Journal of Materials Processing Technology, 2009, 209(2): 871-875.

    [30] [30] HAMM C M, SCHFER T, ZHANG H B, et al. Non-conventional synthesis of the 413 MAX phase V4AlC3[J]. Zeitschrift Für Anorganische Und Allgemeine Chemie, 2016, 642(23): 1397-1401.

    [31] [31] TIAN W B, WANG P L, KAN Y M, et al. Cr2AlC powders prepared by molten salt method[J]. Journal of Alloys and Compounds, 2008, 461(1/2): L5-L10.

    [32] [32] LIU A M, YANG Q Y, REN X F, et al. Energy- and cost-efficient NaCl-assisted synthesis of MAX-phase Ti3AlC2 at lower temperature[J]. Ceramics International, 2020, 46(5): 6934-6939.

    [33] [33] WANG B X, ZHOU A G, HU Q K, et al. Synthesis and oxidation resistance of V2AlC powders by molten salt method[J]. International Journal of Applied Ceramic Technology, 2017, 14(5): 873-879.

    [34] [34] GUO X, WANG J X, YANG S Y, et al. Preparation of Ti3SiC2 powders by the molten salt method[J]. Materials Letters, 2013, 111: 211-213.

    [35] [35] GALVIN T, HYATT N C, RAINFORTH W M, et al. Molten salt synthesis of MAX phases in the Ti-Al-C system[J]. Journal of the European Ceramic Society, 2018, 38(14): 4585-4589.

    [36] [36] ZHONG Y, LIU Y, YE J W, et al. Molten salt synthesis and formation mechanisms of ternary V-based MAX phases by V-Al alloy strategy[J]. Journal of the American Ceramic Society, 2022, 105(3): 2277-2287.

    [37] [37] LI Y B, QIN Y Q, CHEN K, et al. Molten salt synthesis of nanolaminated Sc2SnC MAX phase[J]. Journal of Inorganic Materials, 2021, 36(7): 773.

    [38] [38] LI Y B, MA G L, SHAO H, et al. Electrochemical lithium storage performance of molten salt derived V2SnC MAX phase[J]. Nano-Micro Letters, 2021, 13(1): 1-10.

    [39] [39] DASH A, VAEN R, GUILLON O, et al. Molten salt shielded synthesis of oxidation prone materials in air[J]. Nature Materials, 2019, 18(5): 465-470.

    [40] [40] DASH A, SOHN Y J, VAEN R, et al. Synthesis of Ti3SiC2 MAX phase powder by a molten salt shielded synthesis (MS3) method in air[J]. Journal of the European Ceramic Society, 2019, 39(13): 3651-3659.

    [41] [41] BADIE S, DASH A, SOHN Y J, et al. Synthesis, sintering, and effect of surface roughness on oxidation of submicron Ti2AlC ceramics[J]. Journal of the American Ceramic Society, 2021, 104(4): 1669-1688.

    [42] [42] ROY C, BANERJEE P, BHATTACHARYYA S. Molten salt shielded synthesis (MS3) of Ti2AlN and V2AlC MAX phase powders in open air[J]. Journal of the European Ceramic Society, 2020, 40(3): 923-929.

    [43] [43] BRMANN P, HANEKE L, WROGEMANN J M, et al. Scalable synthesis of MAX phase precursors toward titanium-based MXenes for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(22): 26074-26083.

    [44] [44] LI M, LU J, LUO K, et al. Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes[J]. Journal of the American Chemical Society, 2019, 141(11): 4730-4737.

    [45] [45] LI Y B, LI M, LU J, et al. Single-atom-thick active layers realized in nanolaminated Ti3 (AlxCu1-x)C2 and its artificial enzyme behavior[J]. ACS Nano, 2019, 13(8): 9198-9205.

    [46] [46] DING H M, LI Y B, LU J, et al. Synthesis of MAX phases Nb2CuC and Ti2(Al0.1Cu0.9)N by A-site replacement reaction in molten salts[J]. Materials Research Letters, 2019, 7(12): 510-516.

    [47] [47] GOU B B, WANG L L, YE B, et al. Low-temperature synthesis of pure-phase Ti3(Al, Fe)C2 solid solution with magnetic monoatomic layers by replacement reaction[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(10): 13081-13088.

    [48] [48] YANG T, CHEN Q Y, LI X H, et al. Low-temperature synthesis of Ti3Al(Sn)C2 solid solution using replacement reaction[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(22): 20601-20610.

    [49] [49] YEH C L, CHIANG C H. Combustion synthesis of MAX phase solid solution Ti3(Al, Sn)C2[J]. Nano Hybrids and Composites, 2017, 16: 73-76.

    [50] [50] XU H, HUANG Z Y, ZHAI H X, et al. Fabrication, mechanical properties, and tribological behaviors of Ti3Al0.8Sn0.4C2 solid solution by two-time hot-pressing method[J]. International Journal of Applied Ceramic Technology, 2015, 12(4): 783-789.

    [51] [51] LI Y B, LU J, LI M, et al. Multielemental single-atom-thick a layers in nanolaminated V2(Sn, A)C (A=Fe, Co, Ni, Mn) for tailoring magnetic properties[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(2): 820-825.

    [52] [52] MA G, SHAO H, XU J, et al. Li-ion storage properties of two-dimensional titanium-carbide synthesized via fast one-pot method in air atmosphere[J]. Nature Communications, 2021, 12: 5085.

    [53] [53] ABDELKADER A M, KILBY K T, COX A, et al. DC voltammetry of electro-deoxidation of solid oxides[J]. Chemical Reviews, 2013, 113(5): 2863-2886.

    [54] [54] HYSLOP D J S, ABDELKADER A M, COX A, et al. Utilization of constant current chronopotentiometry to synthesize a Co-Cr alloy[J]. Journal of the Electrochemical Society, 2010, 157(7): E111.

    [55] [55] SUN L, SONG Q S, XU Q, et al. The electrochemical synthesis of TiC reinforced Fe based composite powder from titanium-rich slag[J]. New Journal of Chemistry, 2015, 39(6): 4391-4397.

    [56] [56] ABDELKADER A M, FRAY D J. Electrochemical synthesis of hafnium carbide powder in molten chloride bath and its densification[J]. Journal of the European Ceramic Society, 2012, 32(16): 4481-4487.

    [57] [57] ABDELKADER A M. Molten salts electrochemical synthesis of Cr2AlC[J]. Journal of the European Ceramic Society, 2016, 36(1): 33-42.

    [58] [58] LI S S, ZOU X L, XIONG X L, et al. Electrosynthesis of Ti3AlC2 from oxides/carbon precursor in molten calcium chloride[J]. Journal of Alloys and Compounds, 2018, 735: 1901-1907.

    [59] [59] LIU P J, HOU Z R, HU M J, et al. Electro-synthesis of ultrafine V2AlC MAX-phase and its conversion process towards two-dimensional V2CTX[J]. Journal of the Electrochemical Society, 2020, 167(12): 122501.

    [60] [60] PANG Z Y, ZOU X L, LI S S, et al. Molten salt electrochemical synthesis of ternary carbide Ti3AlC2 from titanium-rich slag[J]. Advanced Engineering Materials, 2020, 22(5): 1901300.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Bin, HU Qianku, LI Dandan, WANG Libo, ZHOU Aiguo. Research Progress on Synthesis of Ternary Layered MAX Phase Ceramics by Molten Salt Method[J]. Journal of Synthetic Crystals, 2022, 51(6): 1132

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 17, 2022

    Accepted: --

    Published Online: Aug. 13, 2022

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics