Opto-Electronic Engineering, Volume. 50, Issue 8, 230117(2023)

Research progress on hybrid vector beam implementation by metasurfaces

Lan Ke1,2, Simeng Zhang1,2, Chenxia Li1, Zhi Hong2, and Xufeng Jing1,2、*
Author Affiliations
  • 1School of Optoelectronic Science and Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
  • 2Terahertz Technology Research Institute, China Jiliang University, Hangzhou, Zhejiang 310018, China
  • show less
    References(132)

    [1] Holloway C L, Kuester E F, Gordon J A et al. An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials[J]. IEEE Antennas Propag Mag, 54, 10-35(2012).

    [2] Kildishev A V, Boltasseva A, Shalaev V M. Planar photonics with metasurfaces[J]. Science, 339, e1232009(2013).

    [3] Akyildiz I F, Jornet J M, Han C. Terahertz band: next frontier for wireless communications[J]. Phys Commun, 12, 16-32(2014).

    [4] Liu S, Cui T J, Zhang L et al. Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams[J]. Adv Sci, 3, 1600156(2016).

    [5] Li F Y, Tang T T, Li J et al. Chiral coding metasurfaces with integrated vanadium dioxide for thermo-optic modulation of terahertz waves[J]. J Alloys Compd, 826, 154174(2020).

    [6] Zhang L, Wang Z X, Shao R W et al. Dynamically realizing arbitrary multi-bit programmable phases using a 2-bit time-domain coding metasurface[J]. IEEE Trans Antennas Propag, 68, 2984-2992(2020).

    [7] Mueller J P B, Rubin N A, Devlin R C et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Phys Rev Lett, 118, 113901(2017).

    [8] Shabanpour J. Full manipulation of the power intensity pattern in a large space-time digital metasurface: from arbitrary multibeam generation to harmonic beam steering scheme[J]. Ann Phys, 532, 2000321(2020).

    [9] Zhang X L, Deng R Y, Yang F et al. Metasurface-based ultrathin beam splitter with variable split angle and power distribution[J]. ACS Photonics, 5, 2997-3002(2018).

    [10] Gao X, Tang L G, Wu X B et al. Broadband and high-efficiency ultrathin Pancharatnam-Berry metasurfaces for generating X-band orbital angular momentum beam[J]. J Phys D Appl Phys, 54, 075104(2021).

    [11] Xu H X, Liu H W, Ling X H et al. Broadband vortex beam generation using multimode Pancharatnam-Berry metasurface[J]. IEEE Trans Antennas Propag, 65, 7378-7382(2017).

    [12] Ding X M, Monticone F, Zhang K et al. Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency[J]. Adv Mater, 27, 1195-1200(2015).

    [13] Kang M, Chen J, Wang X L et al. Twisted vector field from an inhomogeneous and anisotropic metamaterial[J]. J Opt Soc Am B, 29, 572-576(2012).

    [14] Bomzon Z, Biener G, Kleiner V et al. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings[J]. Opt Lett, 27, 1141-1143(2002).

    [15] Chen W T, Yang K Y, Wang C M et al. High-efficiency broadband meta-hologram with polarization-controlled dual images[J]. Nano Lett, 14, 225-230(2014).

    [16] Sun S L, Yang K Y, Wang C M et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces[J]. Nano Lett, 12, 6223-6229(2012).

    [17] Sun S L, He Q, Xiao S Y et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nat Mater, 11, 426-431(2012).

    [18] Ndagano B, Nape I, Cox M A et al. Creation and detection of vector vortex modes for classical and quantum communication[J]. J Lightwave Technol, 36, 292-301(2018).

    [19] Erhard M, Fickler R, Krenn M et al. Twisted photons: new quantum perspectives in high dimensions[J]. Light Sci Appl, 7, 17146(2018).

    [20] Moreau P A, Toninelli E, Gregory T et al. Ghost imaging using optical correlations[J]. Laser Photon Rev, 12, 1700143(2018).

    [21] Nassiri M G, Brasselet E. Multispectral management of the photon orbital angular momentum[J]. Phys Rev Lett, 121, 213901(2018).

    [22] Endo K, Sekiya M, Kim J et al. Resonant tunneling diode integrated with metalens for high-directivity terahertz waves[J]. Appl Phys Express, 14, 082001(2021).

    [23] Lu X Q, Zeng X Y, Lv H R et al. Polarization controllable plasmonic focusing based on nanometer holes[J]. Nanotechnology, 31, 135201(2020).

    [24] Qu S W, Wu W W, Chen B J et al. Controlling dispersion characteristics of terahertz metasurface[J]. Sci Rep, 5, 9367(2015).

    [25] Taravati S, Eleftheriades G V. Pure and linear frequency-conversion temporal metasurface[J]. Phys Rev Appl, 15, 064011(2021).

    [26] Li Z Y, Zhu Y B, Hao Y F et al. Hybrid metasurface-based mid-infrared biosensor for simultaneous quantification and identification of monolayer protein[J]. ACS Photonics, 6, 501-509(2019).

    [27] Rosales-Guzmán C, Ndagano B, Forbes A. A review of complex vector light fields and their applications[J]. J Opt, 20, 123001(2018).

    [28] Otte E, Alpmann C, Denz C. Polarization singularity explosions in tailored light fields[J]. Laser Photon Rev, 12, 1700200(2018).

    [29] Wang X W, Nie Z Q, Liang Y et al. Recent advances on optical vortex generation[J]. Nanophotonics, 7, 1533-1556(2018).

    [30] Forbes A. Structured light from lasers[J]. Laser Photon Rev, 13, 1900140(2019).

    [31] Maguid E, Chriki R, Yannai M et al. Topologically controlled intracavity laser modes based on Pancharatnam-Berry phase[J]. ACS Photonics, 5, 1817-1821(2018).

    [32] Zambon N C, St-Jean P, Milićević M et al. Optically controlling the emission chirality of microlasers[J]. Nat Photonics, 13, 283-288(2019).

    [33] Hayenga W E, Parto M, Ren J et al. Direct generation of tunable orbital angular momentum beams in microring lasers with broadband exceptional points[J]. ACS Photonics, 6, 1895-1901(2019).

    [34] Chen H T, Taylor A J, Yu N F. A review of metasurfaces: physics and applications[J]. Rep Prog Phys, 79, 076401(2016).

    [35] Luo W J, Xiao S Y, He Q et al. Photonic spin hall effect with nearly 100% efficiency[J]. Adv Opt Mater, 3, 1102-1108(2015).

    [36] Zheng G X, Muhlenbernd H, Kenney M et al. Metasurface holograms reaching 80% efficiency[J]. Nat Nanotechnol, 10, 308-312(2015).

    [37] Sievenpiper D, Zhang L J, Broas R F J et al. High-impedance electromagnetic surfaces with a forbidden frequency band[J]. IEEE Trans Microw Theory Tech, 47, 2059-2074(1999).

    [38] Sun S L, He Q, Hao J M et al. Electromagnetic metasurfaces: physics and applications[J]. Adv Opt Photonics, 11, 380-479(2019).

    [39] Pu M B, Li X, Ma X L et al. Catenary optics for achromatic generation of perfect optical angular momentum[J]. Sci Adv, 1, e1500396(2015).

    [40] Arbabi A, Horie Y, Bagheri M et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nat Nanotechnol, 10, 937-943(2015).

    [41] Chen M Z, Mazilu M, Arita Y et al. Dynamics of microparticles trapped in a perfect vortex beam[J]. Opt Lett, 38, 4919-4922(2013).

    [42] Luo X G, Pu M B, Zhang F et al. Vector optical field manipulation via structural functional materials: tutorial[J]. J Appl Phys, 131, 181101(2022).

    [43] Zhang F, Pu M B, Guo Y H et al. Synthetic vector optical fields with spatial and temporal tunability[J]. Sci China Phys Mech Astron, 65, 254211(2022).

    [44] Zhang F, Guo Y H, Pu M B et al. Meta-optics empowered vector visual cryptography for high security and rapid decryption[J]. Nat Commun, 14, 1946(2023).

    [45] Bao Y J, Yu Y, Xu H F et al. Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control[J]. Light Sci Appl, 8, 95(2019).

    [46] Hsiao H H, Chu C H, Tsai D P. Fundamentals and applications of metasurfaces[J]. Small Methods, 1, 1600064(2017).

    [47] Khorasaninejad M, Chen W T, Devlin R C et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 352, 1190-1194(2016).

    [48] Wang J, Yang J Y, Fazal I M et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nat Photonics, 6, 488-496(2012).

    [49] Yue F Y, Wen D D, Xin J T et al. Vector vortex beam generation with a single plasmonic metasurface[J]. ACS Photonics, 3, 1558-1563(2016).

    [50] Yu Y F, Zhu A Y, Paniagua-Domínguez R et al. High-transmission dielectric metasurface with 2π phase control at visible wavelengths[J]. Laser Photon Rev, 9, 412-418(2015).

    [51] Evlyukhin A B, Novikov S M, Zywietz U et al. Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region[J]. Nano Lett, 12, 3749-3755(2012).

    [52] Wang Z, Yao Y, Pan W K et al. Bifunctional manipulation of terahertz waves with high-efficiency transmissive dielectric metasurfaces[J]. Adv Sci, 10, 2205499(2023).

    [53] Devlin R C, Ambrosio A, Rubin N A et al. Arbitrary spin-to-orbital angular momentum conversion of light[J]. Science, 358, 896-901(2017).

    [54] Fan Z B, Qiu H Y, Zhang H L et al. A broadband achromatic metalens array for integral imaging in the visible[J]. Light Sci Appl, 8, 67(2019).

    [55] Deng Z L, Jin M K, Ye X et al. Full-color complex-amplitude vectorial holograms based on multi-freedom metasurfaces[J]. Adv Funct Mater, 30, 1910610(2020).

    [56] Zhou Y, Zheng H Y, Kravchenko I I et al. Flat optics for image differentiation[J]. Nat Photonics, 14, 316-323(2020).

    [57] Ostrovsky A S, Rickenstorff-Parrao C, Arrizón V. Generation of the "perfect" optical vortex using a liquid-crystal spatial light modulator[J]. Opt Lett, 38, 534-536(2013).

    [58] Koshelev K, Tang Y T, Li K F et al. Nonlinear metasurfaces governed by bound states in the continuum[J]. ACS Photonics, 6, 1639-1644(2019).

    [59] Fang X Y, Ren H R, Gu M. Orbital angular momentum holography for high-security encryption[J]. Nat Photonics, 14, 102-108(2020).

    [60] Yuan Y Y, Sun S, Chen Y et al. A fully phase-modulated metasurface as an energy-controllable circular polarization router[J]. Adv Sci, 7, 2001437(2020).

    [61] Bao Y J, Ni J C, Qiu C W. A minimalist single-layer metasurface for arbitrary and full control of vector vortex beams[J]. Adv Mater, 32, 1905659(2020).

    [62] Zheng C L, Li J, Yue Z et al. All-dielectric trifunctional metasurface capable of independent amplitude and phase modulation[J]. Laser Photon Rev, 16, 2200051(2022).

    [63] Li X, Ma X L, Luo X G. Principles and applications of metasurfaces with phase modulation[J]. Opto-Electron Eng, 44, 255-275(2017).

    [64] Zhang F, Pu M B, Li X et al. All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin-orbit interactions[J]. Adv Funct Mater, 27, 1704295(2017).

    [65] Sroor H, Huang Y W, Sephton B et al. High-purity orbital angular momentum states from a visible metasurface laser[J]. Nat Photonics, 14, 498-503(2020).

    [66] Li J T, Wang G C, Yue Z et al. Dynamic phase assembled terahertz metalens for reversible conversion between linear polarization and arbitrary circular polarization[J]. Opto-Electron Adv, 5, 210062(2022).

    [67] Davis J A, Moreno I, Badham K et al. Nondiffracting vector beams where the charge and the polarization state vary with propagation distance[J]. Opt Lett, 41, 2270-2273(2016).

    [68] Tittl A, Leitis A, Liu M K et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces[J]. Science, 360, 1105-1109(2018).

    [69] Genevet P, Capasso F, Aieta F et al. Recent advances in planar optics: from plasmonic to dielectric metasurfaces[J]. Optica, 4, 139-152(2017).

    [70] Shen Y J, Wang X J, Xie Z W et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities[J]. Light Sci Appl, 8, 90(2019).

    [71] Xie X, Pu M B, Jin J J et al. Generalized Pancharatnam-Berry phase in rotationally symmetric meta-atoms[J]. Phys Rev Lett, 126, 183902(2021).

    [72] Karimi E, Schulz S A, De Leon I et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface[J]. Light Sci Appl, 3, e167(2014).

    [73] Chen W T, Khorasaninejad M, Zhu A Y et al. Generation of wavelength-independent subwavelength Bessel beams using metasurfaces[J]. Light Sci Appl, 6, e16259(2017).

    [74] Maguid E, Yulevich I, Veksler D et al. Photonic spin-controlled multifunctional shared-aperture antenna array[J]. Science, 352, 1202-1206(2016).

    [75] Fickler R, Lapkiewicz R, Plick W N et al. Quantum entanglement of high angular momenta[J]. Science, 338, 640-643(2012).

    [76] Gregg P, Kristensen P, Ramachandran S. Conservation of orbital angular momentum in air-core optical fibers[J]. Optica, 2, 267-270(2015).

    [77] Huang L L, Chen X Z, Mühlenbernd H et al. Dispersionless phase discontinuities for controlling light propagation[J]. Nano Lett, 12, 5750-5755(2012).

    [78] Yu S X, Li L, Shi G M et al. Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain[J]. Appl Phys Lett, 108, 241901(2016).

    [79] Huang L L, Chen X Z, Mühlenbernd H et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nat Commun, 4, 2808(2013).

    [80] Huang H, Xie G D, Yan Y et al. 100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength[J]. Opt Lett, 39, 197-200(2014).

    [81] Milione G, Lavery M P J, Huang H et al. 4 x 20 Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer[J]. Opt Lett, 40, 1980-1983(2015).

    [82] Forbes A, Dudley A, McLaren M. Creation and detection of optical modes with spatial light modulators[J]. Adv Opt Photonics, 8, 200-227(2016).

    [83] Deng L G, Deng J, Guan Z Q et al. Malus-metasurface-assisted polarization multiplexing[J]. Light Sci Appl, 9, 101(2020).

    [84] Lei T, Zhang M, Li Y R et al. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings[J]. Light Sci Appl, 4, e257(2015).

    [85] Sain B, Meier C, Zentgraf T. Nonlinear optics in all-dielectric nanoantennas and metasurfaces: a review[J]. Adv Photonics, 1, 024002(2019).

    [86] Liu M Z, Huo P C, Zhu W Q et al. Broadband generation of perfect poincaré beams via dielectric spin-multiplexed metasurface[J]. Nat Commun, 12, 2230(2021).

    [87] Dorrah A H, Rubin N A, Tamagnone M et al. Structuring total angular momentum of light along the propagation direction with polarization-controlled meta-optics[J]. Nat Commun, 12, 6249(2021).

    [88] Dorrah A H, Rubin N A, Zaidi A et al. Metasurface optics for on-demand polarization transformations along the optical path[J]. Nat Photonics, 15, 287-296(2021).

    [89] Zheng C L, Li J, Liu J Y et al. Creating longitudinally varying vector vortex beams with an all-dielectric metasurface[J]. Laser Photon Rev, 16, 2200236(2022).

    [90] Guo Y H, Zhang S C, Pu M B et al. Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation[J]. Light Sci Appl, 10, 63(2021).

    [91] Wang D Y, Liu T, Zhou Y J et al. High-efficiency metadevices for bifunctional generations of vectorial optical fields[J]. Nanophotonics, 10, 685-695(2021).

    [92] Wang D Y, Liu F F, Liu T et al. Efficient generation of complex vectorial optical fields with metasurfaces[J]. Light Sci Appl, 10, 67(2021).

    [93] Pfeiffer C, Grbic A. Controlling vector Bessel beams with metasurfaces[J]. Phys Rev Appl, 2, 044012(2014).

    [94] Wang P F, He F Y, Liu J J et al. High-Q terahertz all-dielectric metasurface based on bound states in the continuum[J]. Laser Technol, 46, 630-635(2022).

    [95] Parigi V, D'Ambrosio V, Arnold C et al. Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory[J]. Nat Commun, 6, 7706(2015).

    [96] Luo L W, Ophir N, Chen C P et al. WDM-compatible mode-division multiplexing on a silicon chip[J]. Nat Commun, 5, 3069(2014).

    [97] Hu G W, Hong X M, Wang K et al. Coherent steering of nonlinear chiral valley photons with a synthetic Au-WS2 metasurface[J]. Nat Photonics, 13, 467-472(2019).

    [98] D'Ambrosio V, Nagali E, Walborn S P et al. Complete experimental toolbox for alignment-free quantum communication[J]. Nat Commun, 3, 961(2012).

    [99] Chow P K, Jacobs-Gedrim R B, Gao J et al. Defect-induced photoluminescence in monolayer semiconducting transition metal dichalcogenides[J]. ACS Nano, 9, 1520-1527(2015).

    [100] Yue Z, Li J T, Li J et al. Terahertz metasurface zone plates with arbitrary polarizations to a fixed polarization conversion[J]. Opto-Electron Sci, 1, 210014(2022).

    [101] Zhang Y X, Pu M B, Jin J J et al. Crosstalk-free achromatic full Stokes imaging polarimetry metasurface enabled by polarization-dependent phase optimization[J]. Opto-Electron Adv, 5, 220058(2022).

    [102] Li G X, Chen S M, Pholchai N et al. Continuous control of the nonlinearity phase for harmonic generations[J]. Nat Mater, 14, 607-612(2015).

    [103] Genevet P, Lin J, Kats M A et al. Holographic detection of the orbital angular momentum of light with plasmonic photodiodes[J]. Nat Commun, 3, 1278(2012).

    [104] Janisch C, Wang Y X, Ma D et al. Extraordinary second harmonic generation in tungsten disulfide monolayers[J]. Sci Rep, 4, 5530(2014).

    [105] Qin F, Ding L, Zhang L et al. Hybrid bilayer plasmonic metasurface efficiently manipulates visible light[J]. Sci Adv, 2, e1501168(2016).

    [106] Hu G W, Ou Q D, Si G Y et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers[J]. Nature, 582, 209-213(2020).

    [107] Zhang Y C, Liu W W, Gao J et al. Generating focused 3D perfect vortex beams by plasmonic metasurfaces[J]. Adv Opt Mater, 6, 1701228(2018).

    [108] Chen S Q, Xie Z Q, Ye H P et al. Cylindrical vector beam multiplexer/demultiplexer using off-axis polarization control[J]. Light Sci Appl, 10, 222(2021).

    [109] Xia X L, Zeng X Z, Song S C et al. Longitudinal super-resolution spherical multi-focus array based on column vector light modulation[J]. Opto-Electron Eng, 49, 220109(2022).

    [110] Lu Y D, Xu Y, Ouyang X et al. Cylindrical vector beams reveal radiationless anapole condition in a resonant state[J]. Opto-Electron Adv, 5, 210014(2022).

    [111] Genevet P, Yu N F, Aieta F et al. Ultra-thin plasmonic optical vortex plate based on phase discontinuities[J]. Appl Phys Lett, 100, 013101(2012).

    [112] Zhao W C, Wang K, Hong X M et al. Large second-harmonic vortex beam generation with quasi-nonlinear spin-orbit interaction[J]. Sci Bull, 66, 449-456(2021).

    [113] Zhao H, Wang X K, Liu S T et al. Highly efficient vectorial field manipulation using a transmitted tri-layer metasurface in the terahertz band[J]. Opto-Electron Adv, 6, 220012(2023).

    [114] He Q, Sun S L, Zhou L. Tunable/reconfigurable metasurfaces: physics and applications[J]. Research, 2019, 1849272(2019).

    [115] Wang Q, Rogers E T F, Gholipour B et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials[J]. Nat Photonics, 10, 60-65(2016).

    [116] Mou N L, Liu X L, Wei T et al. Large-scale, low-cost, broadband and tunable perfect optical absorber based on phase-change material[J]. Nanoscale, 12, 5374-5379(2020).

    [117] Mehmood M Q, Mei S T, Hussain S et al. Visible-frequency metasurface for structuring and spatially multiplexing optical vortices[J]. Adv Mater, 28, 2533-2539(2016).

    [118] Cui T J, Qi M Q, Wan X et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light Sci Appl, 3, e218(2014).

    [119] Liu S, Noor A, Du L L et al. Anomalous refraction and nondiffractive bessel-beam generation of terahertz waves through transmission-type coding metasurfaces[J]. ACS Photonics, 3, 1968-1977(2016).

    [120] Deng Z L, Deng J H, Zhuang X et al. Diatomic metasurface for vectorial holography[J]. Nano Lett, 18, 2885-2892(2018).

    [121] Wen D D, Yue F Y, Li G X et al. Helicity multiplexed broadband metasurface holograms[J]. Nat Commun, 6, 8241(2015).

    [122] Yan C, Li X, Pu M B et al. Generation of polarization-sensitive modulated optical vortices with all-dielectric metasurfaces[J]. ACS Photonics, 6, 628-633(2019).

    [123] Pfeiffer C, Grbic A. Metamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets[J]. Phys Rev Lett, 110, 197401(2013).

    [124] Yu N F, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).

    [125] Wang D C, Zhang L C, Gu Y H et al. Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface[J]. Sci Rep, 5, 15020(2015).

    [126] Grady N K, Heyes J E, Chowdhury D R et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 340, 1304-1307(2013).

    [127] Shuang Y, Zhao H T, Ji W et al. Programmable high-order OAM-carrying beams for direct-modulation wireless communications[J]. IEEE J Emerging Sel Top Circuits Syst, 10, 29-37(2020).

    [128] Li S J, Li Y B, Zhang L et al. Programmable controls to scattering properties of a radiation array[J]. Laser Photon Rev, 15, 2000449(2021).

    [129] Liu G Y, Li L, Han J Q et al. Frequency-domain and spatial-domain reconfigurable metasurface[J]. ACS Appl Mater Interfaces, 12, 23554-23564(2020).

    [130] Liu B Y, Du J C, Jiang X N et al. All-in-one integrated multifunctional broadband metasurface for analogue signal processing, polarization conversion, beam manipulation, and near-field sensing[J]. Adv Opt Mater, 10, 2201217(2022).

    [131] Zhang X G, Jiang W X, Jiang H L et al. An optically driven digital metasurface for programming electromagnetic functions[J]. Nat Electron, 3, 165-171(2020).

    [132] Chen D B, Yang J B, He X et al. Tunable polarization-preserving vortex beam generator based on diagonal cross-shaped graphene structures at terahertz frequency[J]. Adv Opt Mater, 11, 2300182(2023).

    Tools

    Get Citation

    Copy Citation Text

    Lan Ke, Simeng Zhang, Chenxia Li, Zhi Hong, Xufeng Jing. Research progress on hybrid vector beam implementation by metasurfaces[J]. Opto-Electronic Engineering, 2023, 50(8): 230117

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: May. 19, 2023

    Accepted: Sep. 4, 2023

    Published Online: Nov. 15, 2023

    The Author Email:

    DOI:10.12086/oee.2023.230117

    Topics