Acta Optica Sinica, Volume. 38, Issue 4, 0428001(2018)

A Semi-Supervised Dimension Reduction Method for Polarimetric SAR Image Classification

Xinfang Xie, Xin Xu*, Hao Dong, Han Wu, and Luoru Li
Author Affiliations
  • School of Electronic Information, Wuhan University, Wuhan, Hubei 430072, China
  • show less
    Figures & Tables(17)
    Spatial scatter distribution of polarimetric features of Flevoland. (a) σHH0, σHV0, σVV0; (b) H, α, A; (c) ρHH-VV, ρHH-HV, ρVV-HV
    Flowchart of polarimetric SAR image classification based on SLDA
    (a) Pseudocolor image; (b) labeled truth in classification of RADARSAT-2 Flevoland
    (a) Pseudocolor image; (b) labeled truth in classification of AIRSAR Flevoland 1
    (a) Pseudocolor image; (b) labeled truth in classification of AIRSAR Flevoland 2
    Relationship between training data number and classification accuracy. (a) RADARSAT-2 Flevoland; (b) AIRSAR Flevoland 1; (c) AIRSAR Flevoland 2
    Relationship between dimension number and classification accuracy. (a) RADARSAT-2 Flevoland; (b) AIRSAR Flevoland 1; (c) AIRSAR Flevoland 2
    Relationship between labeled sample proportion and classification accuracy. (a) RADARSAT-2 Flevoland; (b) AIRSAR Flevoland 1; (c) AIRSAR Flevoland 2
    Relationship between balance factor and classification accuracy. (a) RADARSAT-2 Flevoland; (b) AIRSAR Flevoland 1; (c) AIRSAR Flevoland 2
    Relationship between feature number and classification accuracy
    Classification maps of RADARSAT-2 Flevoland. (a) SLDA+KNN; (b) KNN; (c) PCA+KNN; (d) LPP+KNN; (e) LDA+KNN; (f) local detail maps
    Classification maps of AIRSAR Flevoland 1. (a) SLDA+KNN; (b) KNN; (c) PCA+KNN; (d) LPP+KNN; (e) LDA+KNN
    3D scatter distribution diagram of AIRSAR Flevoland 2. (a) SLDA; (b) PCA; (c) LPP; (d) LDA
    Classification maps of AIRSAR Flevoland 2. (a) SLDA+KNN; (b) KNN; (c) PCA+KNN; (d) LPP+KNN; (e) LDA+KNN
    • Table 1. Classification accuracy of RADARSAT-2 Flevoland%

      View table

      Table 1. Classification accuracy of RADARSAT-2 Flevoland%

      CategorySLDAPCALPPKNNLDA
      Water93.0793.7793.5793.8194.18
      Farmland91.9488.1586.5088.9491.13
      Forest88.3981.5981.6883.0181.05
      Building81.0268.6571.3367.4269.10
      OA88.8883.2483.2383.6784.25
    • Table 2. Classification accuracy of AIRSAR Flevoland 1%

      View table

      Table 2. Classification accuracy of AIRSAR Flevoland 1%

      CategorySLDAPCALPPKNNLDA
      Steam bean96.8894.999.7094.3098.37
      Forest98.5995.0347.0195.0895.66
      Potato89.7784.9023.0385.2388.04
      Lucerne92.7490.707.3490.8292.99
      Wheat95.0288.4892.3188.9793.54
      Bare soil89.2692.075.9592.0893.61
      Beet88.0881.511.1282.1380.51
      Rapeseed92.7992.0714.3792.2885.13
      Pea66.9172.321.8673.1376.83
      Grass85.4673.711.4273.7175.36
      Water98.5593.8748.2095.5299.46
      OA91.0187.4434.7087.7489.11
    • Table 3. Classification accuracy of AIRSAR Flevoland 2%

      View table

      Table 3. Classification accuracy of AIRSAR Flevoland 2%

      CategorySLDAPCALPPKNNLDA
      Wheat97.9397.2695.5097.3597.44
      Rapeseed98.8198.4452.5898.5199.52
      Beet87.7483.3819.3583.6873.61
      Onion53.6450.790.9351.2933.75
      Corn47.3844.124.7844.0643.76
      Lucerne97.7496.575.5496.6091.34
      Barley92.5789.4736.2489.4473.62
      Flax97.3296.411.7896.5192.26
      Fruit96.4392.2010.4592.1793.03
      Grass70.1665.2115.2265.3053.29
      Pea68.6873.10073.0153.74
      Steam bean41.0439.9214.5039.5620.75
      Potato97.9497.9236.3598.0397.59
      OA92.5390.8147.8490.8985.59
    Tools

    Get Citation

    Copy Citation Text

    Xinfang Xie, Xin Xu, Hao Dong, Han Wu, Luoru Li. A Semi-Supervised Dimension Reduction Method for Polarimetric SAR Image Classification[J]. Acta Optica Sinica, 2018, 38(4): 0428001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Oct. 19, 2017

    Accepted: --

    Published Online: Jul. 10, 2018

    The Author Email: Xu Xin (xinxu@whu.edu.cn)

    DOI:10.3788/AOS201838.0428001

    Topics