High Power Laser and Particle Beams, Volume. 35, Issue 1, 012009(2023)

Current situation and development trend analysis of femtosecond laser Betatron radiation source

Ruixian Huang1,2, Chuanyi Xi1, Liqi Han1, Jinqing Yu1, Tongpu Yu2, and Xueqing Yan3,4
Author Affiliations
  • 1Key Laboratory of High Energy Physics and Applications of Hunan Province, School of Physics and Electronics, Hunan University, Changsha 410082, China
  • 2College of Science, National University of Defense Technology, Changsha 410073, China
  • 3State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
  • 4Beijing Laser Acceleration Innovation Center, Beijing 101407, China
  • show less
    References(52)

    [1] Einstein A. On the special and general theory of relativity[J]. CPAE (English translation), 6, 247-420(1917).

    [2] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 55, 447-449(1985).

    [3] Ma Wenjun, Liu Zhipeng, Wang Pengjie, . Experimental progress of laser-driven high-energy proton acceleration and new acceleration schemes[J]. Acta Physica Sinica, 70, 084102(2021).

    [4] Peng Ziyang, Cao Zhengxuan, Gao Ying, . Application of liquid film targets in laser-driven radiation sources and laser ion acceleration[J]. High Power Laser and Particle Beams, 34, 081003(2022).

    [5] Albert F, Thomas A G R, Mangles S P D, et al. Laser wakefield accelerator based light sources: potential applications and requirements[J]. Plasma Physics and Controlled Fusion, 56, 084015(2014).

    [6] Albert F, Thomas A G R. Applications of laser wakefield accelerator-based light sources[J]. Plasma Physics and Controlled Fusion, 58, 103001(2016).

    [7] Corde S, Phuoc K T, Lambert G, et al. Femtosecond X rays from laser-plasma accelerators[J]. Reviews of Modern Physics, 85, 1-48(2013).

    [8] Schlenvoigt H P, Haupt K, Debus A, et al. A compact synchrotron radiation source driven by a laser-plasma wakefield accelerator[J]. Nature Physics, 4, 130-133(2008).

    [9] Pukhov A, Kiselev S, Kostyukov I, et al. Relativistic laser-plasma bubbles: new sources of energetic particles and X-rays[J]. Nuclear Fusion, 44, S191-S201(2004).

    [10] Kiselev S, Pukhov A, Kostyukov I. X-ray generation in strongly nonlinear plasma waves[J]. Physical Review Letters, 93, 135004(2004).

    [11] Chen Min, Liu Feng, Li Boyuan, . Development and prospect of laser plasma wakefield accelerator[J]. High Power Laser and Particle Beams, 32, 092001(2020).

    [12] Pukhov A, Meyer-Ter-Vehn J. Laser wake field acceleration: the highly non-linear broken-wave regime[J]. Applied Physics B, 74, 355-361(2002).

    [13] [13] Jackson J D. Classical electrodynamics[M]. 3rd ed. New Yk: Wiley, 1999.

    [14] Wang Shuoqin, Clayton C E, Blue B E, et al. X-ray emission from betatron motion in a plasma wiggler[J]. Physical Review Letters, 88, 135004(2002).

    [15] Németh K, Shen Baifei, Li Yuelin, et al. Laser-driven coherent betatron oscillation in a laser-wakefield cavity[J]. Physical Review Letters, 100, 095002(2008).

    [16] Ta Phuoc K, Corde S, Shah R, et al. Imaging electron trajectories in a laser-wakefield cavity using betatron X-ray radiation[J]. Physical Review Letters, 97, 225002(2006).

    [17] Corde S, Thaury C, Phuoc K T, et al. Mapping the X-ray emission region in a laser-plasma accelerator[J]. Physical Review Letters, 107, 215004(2011).

    [18] Fourmaux S, Corde S, Ta Phuoc K, et al. Demonstration of the synchrotron-type spectrum of laser-produced Betatron radiation[J]. New Journal of Physics, 13, 033017(2011).

    [19] Schnell M, Sävert A, Landgraf B, et al. Deducing the electron-beam diameter in a laser-plasma accelerator using X-ray betatron radiation[J]. Physical Review Letters, 108, 075001(2012).

    [20] Feng Jie, Li Yifei, Geng Xiaotao, et al. Circularly polarized X-ray generation from an ionization induced laser plasma electron accelerator[J]. Plasma Physics and Controlled Fusion, 62, 105021(2020).

    [21] Kneip S, McGuffey C, Martins J L, et al. Bright spatially coherent synchrotron X-rays from a table-top source[J]. Nature Physics, 6, 980-983(2010).

    [22] Cipiccia S, Islam M R, Ersfeld B, et al. Gamma-rays from harmonically resonant betatron oscillations in a plasma wake[J]. Nature Physics, 7, 867-871(2011).

    [23] Ferri J, Corde S, Döpp A, et al. High-brilliance betatron γ-ray source powered by laser-accelerated electrons[J]. Physical Review Letters, 120, 254802(2018).

    [24] Lei Bifeng, Wang Jingwei, Kharin V, et al. γ-ray generation from plasma wakefield resonant wiggler[J]. Physical Review Letters, 120, 134801(2018).

    [25] Yu Tongpu, Pukhov A, Sheng Zhengming, et al. Bright betatronlike X rays from radiation pressure acceleration of a mass-limited foil target[J]. Physical Review Letters, 110, 045001(2013).

    [26] Lécz Z, Andreev A, Hafz N. Substantial enhancement of betatron radiation in cluster targets[J]. Physical Review E, 102, 053205(2020).

    [27] Chen Liming, Yan Wenchao, Li D Z, et al. Bright betatron X-ray radiation from a laser-driven-clustering gas target[J]. Scientific Reports, 3, 1912(2013).

    [28] Dong Chuanfei, Zhao T Z, Behm K, et al. High flux femtosecond X-ray emission from the electron-hose instability in laser wakefield accelerators[J]. Physical Review Accelerators and Beams, 21, 041303(2018).

    [29] Li Yifei, Feng Jie, Tan Junhao, et al. Electron beam and betatron X-ray generation in a hybrid electron accelerator driven by high intensity picosecond laser pulses[J]. High Energy Density Physics, 37, 100859(2020).

    [30] Tomkus V, Girdauskas V, Dudutis J, et al. Laser wakefield accelerated electron beams and betatron radiation from multijet gas targets[J]. Scientific Reports, 10, 16807(2020).

    [31] Shen Xiaofei, Pukhov A, Günther M M, et al. Bright betatron X-rays generation from picosecond laser interactions with long-scale near critical density plasmas[J]. Applied Physics Letters, 118, 134102(2021).

    [32] Kozlova M, Andriyash I, Gautier J, et al. Hard X rays from laser-wakefield accelerators in density tailored plasmas[J]. Physical Review X, 10, 011061(2020).

    [33] Corde S, Phuoc K T, Fitour R, et al. Controlled betatron X-ray radiation from tunable optically injected electrons[J]. Physical Review Letters, 107, 255003(2011).

    [34] Döpp A, Mahieu B, Lifschitz A, et al. Stable femtosecond X-rays with tunable polarization from a laser-driven accelerator[J]. Light: Science & Applications, 6, e17086(2017).

    [35] Zhang Guobo, Chen Min, Yang Xiaohu, et al. Betatron radiation polarization control by using an off-axis ionization injection in a laser wakefield acceleration[J]. Optics Express, 28, 29927-29936(2020).

    [36] Rao B S, Cho M H, Kim H T, et al. Optical shaping of plasma cavity for controlled laser wakefield acceleration[J]. Physical Review Research, 2, 043319(2020).

    [37] Rousse A, Ta Phuoc K, Shah R, et al. Production of a keV X-ray beam from synchrotron radiation in relativistic laser-plasma interaction[J]. Physical Review Letters, 93, 135005(2004).

    [38] Kneip S, Nagel S R, Bellei C, et al. Observation of synchrotron radiation from electrons accelerated in a petawatt-laser-generated plasma cavity[J]. Physical Review Letters, 100, 105006(2008).

    [39] Mangles S P D, Genoud G, Kneip S, et al. Controlling the spectrum of X-rays generated in a laser-plasma accelerator by tailoring the laser wavefront[J]. Applied Physics Letters, 95, 181106(2009).

    [40] Thorn D B, Geddes C G R, Matlis N H, et al. Spectroscopy of betatron radiation emitted from laser-produced wakefield accelerated electrons[J]. Review of Scientific Instruments, 81, 10E325(2010).

    [41] Genoud G, Cassou K, Wojda F, et al. Laser-plasma electron acceleration in dielectric capillary tubes[J]. Applied Physics B, 105, 309-316(2011).

    [42] Fourmaux S, Corde S, Phuoc K T, et al. Single shot phase contrast imaging using laser-produced betatron X-ray beams[J]. Optics Letters, 36, 2426-2428(2011).

    [43] Ju Jinchuan, Svensson K, Döpp A, et al. Enhancement of X-rays generated by a guided laser wakefield accelerator inside capillary tubes[J]. Applied Physics Letters, 100, 191106(2012).

    [44] Wang Xiaoming, Zgadzaj R, Fazel N, et al. Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV[J]. Nature Communications, 4, 1988(2013).

    [45] Schnell M, Sävert A, Uschmann I, et al. Optical control of hard X-ray polarization by electron injection in a laser wakefield accelerator[J]. Nature Communications, 4, 2421(2013).

    [46] Ho Y C, Hung T S, Jhou J G, et al. Induction of electron injection and betatron oscillation in a plasma-waveguide-based laser wakefield accelerator by modification of waveguide structure[J]. Physics of Plasmas, 20, 083104(2013).

    [47] Wenz J, Schleede S, Khrennikov K, et al. Quantitative X-ray phase-contrast microtomography from a compact laser-driven betatron source[J]. Nature Communications, 6, 7568(2015).

    [48] Cole J M, Wood J C, Lopes N C, et al. Laser wakefield accelerators as hard X-ray sources for 3D medical imaging of human bone[J]. Scientific Reports, 5, 13244(2015).

    [49] Huang K, Li Y F, Li D Z, et al. Resonantly enhanced betatron hard X-rays from ionization injected electrons in a laser plasma accelerator[J]. Scientific Reports, 6, 27633(2016).

    [50] Döpp A, Hehn L, Götzfried J, et al. Quick X-ray microtomography using a laser-driven betatron source[J]. Optica, 5, 199-203(2018).

    [51] Zhang Qiuju, Sheng Zhengming, Zhang Jie. Solitons formed by ultrashort laser pulses propagating in a plasma[J]. Acta Physica Sinica, 53, 798-802(2004).

    [52] Pukhov A, Sheng Z M, Meyer-Ter-Vehn J. Particle acceleration in relativistic laser channels[J]. Physics of Plasmas, 6, 2847-2854(1999).

    Tools

    Get Citation

    Copy Citation Text

    Ruixian Huang, Chuanyi Xi, Liqi Han, Jinqing Yu, Tongpu Yu, Xueqing Yan. Current situation and development trend analysis of femtosecond laser Betatron radiation source[J]. High Power Laser and Particle Beams, 2023, 35(1): 012009

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Strong Field Quantum Electrodynamics Excited by Super Intense Laser Pulse

    Received: Jul. 18, 2022

    Accepted: --

    Published Online: Feb. 10, 2023

    The Author Email:

    DOI:10.11884/HPLPB202335.220229

    Topics