Acta Optica Sinica, Volume. 43, Issue 21, 2115001(2023)
Hyperspectral Image Super-Resolution Network of Local-Global Attention Feature Reuse
[1] Liu J M, Zheng C, Zhang L M et al. Hyperspectral image classification method based on image reconstruction feature fusion[J]. Chinese Journal of Lasers, 48, 0910001(2021).
[2] Wang Q, Lin J Z, Yuan Y. Salient band selection for hyperspectral image classification via manifold ranking[J]. IEEE Transactions on Neural Networks and Learning Systems, 27, 1279-1289(2016).
[3] Calin M A, Parasca S V, Savastru D et al. Hyperspectral imaging in the medical field: present and future[J]. Applied Spectroscopy Reviews, 49, 435-447(2014).
[4] Liu K, Su H B, Li X K. Estimating high-resolution urban surface temperature using a hyperspectral thermal mixing (HTM) approach[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9, 804-815(2016).
[5] Thai B, Healey G. Invariant subpixel target identification in hyperspectral imagery[J]. Proceedings of SPIE, 3717, 14-24(1999).
[6] Shen B Z, Nie R M, Jiang H P et al. Research on high resolution hyperspectral image classification based on hybrid convolution network[J]. Laser & Optoelectronics Progress, 59, 2428006(2022).
[7] Jiang J J, Sun H, Liu X M et al. Learning spatial-spectral prior for super-resolution of hyperspectral imagery[J]. IEEE Transactions on Computational Imaging, 6, 1082-1096(2020).
[8] Li Q A, Wang Q, Li X L. Mixed 2D/3D convolutional network for hyperspectral image super-resolution[J]. Remote Sensing, 12, 1660(2020).
[9] Wang Q, Li Q, Li X L. Hyperspectral image super-resolution using spectrum and feature context[J]. IEEE Transactions on Industrial Electronics, 68, 11276-11285(2021).
[10] Li Q, Wang Q, Li X L. Exploring the relationship between 2D/3D convolution for hyperspectral image super-resolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 59, 8693-8703(2021).
[11] Zhang L, Nie J T, Wei W et al. Unsupervised adaptation learning for hyperspectral imagery super-resolution[C], 3070-3079(2020).
[12] Wang X H, Chen J, Wei Q et al. Hyperspectral image super-resolution via deep prior regularization with parameter estimation[J]. IEEE Transactions on Circuits and Systems for Video Technology, 32, 1708-1723(2022).
[13] Zhu Z Y, Hou J H, Chen J et al. Hyperspectral image super-resolution via deep progressive zero-centric residual learning[J]. IEEE Transactions on Image Processing, 30, 1423-1438(2021).
[14] Wang X H, Chen J, Richard C. Hyperspectral image super-resolution with deep priors and degradation model inversion[C], 2814-2818(2022).
[15] Hu J F, Huang T Z, Deng L J et al. Fusformer: a transformer-based fusion network for hyperspectral image super-resolution[J]. IEEE Geoscience and Remote Sensing Letters, 19, 6012305(2022).
[16] Huang T, Dong W S, Wu J J et al. Deep hyperspectral image fusion network with iterative spatio-spectral regularization[J]. IEEE Transactions on Computational Imaging, 8, 201-214(2022).
[17] Hong D F, Gao L R, Yao J et al. Graph convolutional networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 59, 5966-5978(2021).
[18] Zhang X D, Wang T J, Zhu S J et al. Hyperspectral image classification based on dilated convolutional attention neural network[J]. Acta Optica Sinica, 41, 0310001(2021).
[19] Ahn N, Kang B, Sohn K A. Image super-resolution via progressive cascading residual network[C], 904-9048(2018).
[20] Lin D Y, Xu G L, Xu W J et al. SCRSR: an efficient recursive convolutional neural network for fast and accurate image super-resolution[J]. Neurocomputing, 398, 399-407(2020).
[21] Xin J W, Li J, Jiang X R et al. Wavelet-based dual recursive network for image super-resolution[J]. IEEE Transactions on Neural Networks and Learning Systems, 33, 707-720(2022).
[22] Wang Z R, Liu G L, Tian G H. A parameter efficient human pose estimation method based on densely connected convolutional module[J]. IEEE Access, 6, 58056-58063(2018).
[23] Qi J H, Wan P C, Gong Z Q et al. A self-improving framework for joint depth estimation and underwater target detection from hyperspectral imagery[J]. Remote Sensing, 13, 1721(2021).
[24] Woo S, Park J, Lee J Y et al. CBAM: convolutional block attention module[M]. Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision-ECCV 2018, 11211, 3-19(2018).
[25] Yasuma F, Mitsunaga T, Iso D et al. Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum[J]. IEEE Transactions on Image Processing, 19, 2241-2253(2010).
[26] Chakrabarti A, Zickler T. Statistics of real-world hyperspectral images[C], 193-200(2011).
Get Citation
Copy Citation Text
Size Wang, Xin Guan, Qiang Li. Hyperspectral Image Super-Resolution Network of Local-Global Attention Feature Reuse[J]. Acta Optica Sinica, 2023, 43(21): 2115001
Category: Machine Vision
Received: Mar. 2, 2023
Accepted: May. 31, 2023
Published Online: Nov. 8, 2023
The Author Email: Li Qiang (liaiqng@tju.edu.cn)