Journal of Inorganic Materials, Volume. 40, Issue 4, 337(2025)
[1] CONG Y, BAIMANOV D, ZHOU Y et al. Penetration and translocation of functional inorganic nanomaterials into biological barriers[J]. Advanced Drug Delivery Reviews, 114615(2022).
[2] FENG Z, XIANG X, HUANG J et al. Intelligent sonocatalytic nanoagents for energy conversion-based therapies[J]. Advanced Functional Materials, 2302579(2023).
[3] WANG J, FAN X, HAN X et al. Ultrasmall inorganic mesoporous nanoparticles: preparation, functionalization, and application[J]. Advanced Materials, 2312374(2024).
[4] SONG Z, SHAFIQ M, TIAN R et al[M].
[5] XU M, QI Y, LIU G et al. Size-dependent
[7] RAN J, WANG X, LIU Y et al. Microreactor-based micro/ nanomaterials: fabrication, advances, and outlook[J]. Materials Horizons, 2343(2023).
[8] MARK D, HAEBERLE S, ROTH G et al. Microfluidic lab-on-a- chip platforms: requirements, characteristics and applications[J]. Chemical Society Reviews, 1153(2010).
[9] ILLATH K, KAR S, GUPTA P et al. Microfluidic nanomaterials: from synthesis to biomedical applications[J]. Biomaterials, 121247(2022).
[11] FABOZZI A, SALA F D, GENNARO M et al. Design of functional nanoparticles by microfluidic platforms as advanced drug delivery systems for cancer therapy[J]. Lab on a Chip, 1389(2023).
[12] LIU Z, FONTANA F, PYTHON A et al. Microfluidics for production of particles: mechanism, methodology, and applications[J]. Small, 1904673(2020).
[13] ZHANG Q, KUANG G, WANG L et al. Tailoring drug delivery systems by microfluidics for tumor therapy[J]. Materials Today, 151(2024).
[15] CONVERY N, GADEGAARD N. 30 years of microfluidics[J]. Micro and Nano Engineering, 76(2019).
[16] FERNANDES P[M].
[17] KLEIN A K, DIETZEL A[M].
[18] MARTINS J P, TORRIERI G, SANTOS H A. The importance of microfluidics for the preparation of nanoparticles as advanced drug delivery systems[J]. Expert Opinion on Drug Delivery, 469(2018).
[19] MARTINS J P, SANTOS H A[M], 321(2023).
[22] LIU Y, YANG G, HUI Y et al. Microfluidic nanoparticles for drug delivery[J]. Small, 2106580(2022).
[24] WANG H, LAN Z, TIAN R et al. Combined helical-blade- strengthened co-flow focusing and high-throughput screening for the synthesis of highly homogeneous nanoliposomes[J]. Nano Today, 102301(2024).
[25] ASANO S, MAKI T, INOUE S et al. Incorporative mixing in microreactors: influence on reactions and importance of inlet designation[J]. Chemical Engineering Journal, 138942(2023).
[26] FAN J, LI S, WU Z et al[M]. Diffusion and mixing in microfluidic devices//Microfluidics for pharmaceutical applications.
[27] BAYAREH M, ASHANI M N, USEFIAN A. Active and passive micromixers: a comprehensive review[J]. Chemical Engineering and Processing: Process Intensification, 107771(2020).
[28] WANG X, LIU Z, WANG B et al. An overview on state-of-art of micromixer designs, characteristics and applications[J]. Analytica Chimica Acta, 341685(2023).
[29] CORTES-QUIROZ C A, AZARBADEGAN A, ZANGENEH M. Effect of channel aspect ratio of 3-D T-mixer on flow patterns and convective mixing for a wide range of Reynolds number[J]. Sensors and Actuators B: Chemical, 1153(2017).
[30] MARIOTTI A, ANTOGNOLI M, GALLETTI C et al. A study on the effect of flow unsteadiness on the yield of a chemical reaction in a T micro-reactor[J]. Micromachines, 242(2021).
[31] AGARWAL T, WANG L. Numerical analysis of vortex T micromixer with diffuser plates and obstacles[J]. Thermal Science and Engineering Progress, 101156(2022).
[32] MATSUNAGA T, NISHINO K. Swirl-inducing inlet for passive micromixers[J]. RSC Advances, 824(2013).
[33] ZHAO S, HU R, NIE Y et al. Intensification of mixing efficiency and reduction of pressure drop in a millimeter scale T-junction mixer optimized by an elliptical array hole structure[J]. Chemical Engineering and Processing: Process Intensification, 109034(2022).
[34] KURNIA J C, AHMADIHOSSEINI A, SASMITO A P. Flow behavior and mixing of single-phase laminar Newtonian miscible fluid in T-junction micromixer with twisted mixing channel - a numerical study[J]. Chemical Engineering and Processing: Process Intensification, 109171(2022).
[35] SCHEMBERG J, ABBASSI A E, LINDENBAUER A et al. Synthesis of biocompatible superparamagnetic iron oxide nanoparticles (SPION) under different microfluidic regimes[J]. ACS Applied Materials & Interfaces, 48011(2022).
[36] ZHAN T, SONG Y, YANG Q et al. Structure and catalytic activity of hemoglobin assembled with layered double hydroxide nanosheets by coprecipitation using a T-shaped microreactor[J]. Chemical Engineering Journal, 1143(2016).
[38] NGO I L, LAI T K, CHOI H J et al. A study on mixing performance of dean flows through spiral micro-channel under various effects[J]. Physics of Fluids, 022004(2020).
[39] CHEN H, ZHANG Y, HUANG L et al. Microfluidic production of silica nanofluids for highly efficient two-phase cooling with micro pin-fins structure[J]. Chemical Engineering Journal, 142799(2023).
[41] YANG H, AKINOGLU E M, GUO L et al. A PTFE helical capillary microreactor for the high throughput synthesis of monodisperse silica particles[J]. Chemical Engineering Journal, 126063(2020).
[42] NIE Y, HAO N, ZHANG J X J. Ultrafast synthesis of multifunctional submicrometer hollow silica spheres in microfluidic spiral channels[J]. Scientific Reports, 12616(2017).
[43] HAO N, NIE Y, ZHANG J X J. Microfluidic flow synthesis of functional mesoporous silica nanofibers with tunable aspect ratios[J]. ACS Sustainable Chemistry & Engineering, 1522(2018).
[44] HAO N, NIE Y, XU Z et al. Microfluidic continuous flow synthesis of functional hollow spherical silica with hierarchical sponge-like large porous shell[J]. Chemical Engineering Journal, 433(2019).
[45] HAO N, NIE Y, XU Z et al. Ultrafast microfluidic synthesis of hierarchical triangular silver core-silica shell nanoplatelet toward enhanced cellular internalization[J]. Journal of Colloid and Interface Science, 370(2019).
[46] SINGH J, KOCKMANN N, NIGAM K D P. Novel three- dimensional microfluidic device for process intensification[J]. Chemical Engineering and Processing: Process Intensification, 78(2014).
[47] KOCKMANN N, ROBERGE D M. Transitional flow and related transport phenomena in curved microchannels[J]. Heat Transfer Engineering, 595(2011).
[48] SCHMIDT P P, PAGANO K, LENARDI C et al. Photo-induced microfluidic production of ultrasmall glyco gold nanoparticles[J]. Angewandte Chemie International Edition, e202210140(2023).
[49] KIM H, KIM D H, KIM S H. Robust and versatile bolt-nut microreactors designed for controlled synthesis of quantum dots[J]. Chemical Engineering Journal, 145761(2023).
[50] HU G, YANG L, LI Y et al. Continuous and scalable fabrication of stable and biocompatible MOF@SiO2 nanoparticles for drug loading[J]. Journal of Materials Chemistry B, 7936(2018).
[51] MAHIN J, TORRENTE-MURCIANO L. Continuous synthesis of monodisperse iron@iron oxide core@shell nanoparticles[J]. Chemical Engineering Journal, 125299(2020).
[52] GAO Y, PINHO B, TORRENTE-MURCIANO L. Tailoring the size of silver nanoparticles by controlling mixing in microreactors[J]. Chemical Engineering Journal, 134112(2022).
[53] WU K J, DE VARINE BOHAN G M, TORRENTE-MURCIANO L. Synthesis of narrow sized silver nanoparticles in the absence of capping ligands in helical microreactors[J]. Reaction Chemistry & Engineering, 116(2017).
[54] LUO X, SU P, ZHANG W et al. Microfluidic devices in fabricating nano or micromaterials for biomedical applications[J]. Advanced Materials Technologies, 1900488(2019).
[55] SONG H, CHEN D L, ISMAGILOV R F. Reactions in droplets in microfluidic channels[J]. Angewandte Chemie International Edition, 7336(2006).
[57] KUMAR D V R, PRASAD B L V, KULKARNI A A. Segmented flow synthesis of Ag nanoparticles in spiral microreactor: role of continuous and dispersed phase[J]. Chemical Engineering Journal, 357(2012).
[58] PENG Z, WANG G, MOGHTADERI B et al. A review of microreactors based on slurry Taylor (segmented) flow[J]. Chemical Engineering Science, 117040(2022).
[59] FU Q, NIU W, YAN L et al. A versatile microfluidic strategy using air-liquid segmented flow for continuous and efficient synthesis of metal-organic frameworks[J]. Materials Letters, 134344(2023).
[60] PASETA L, SEOANE B, JULVE D et al. Accelerating the controlled synthesis of metal-organic frameworks by a microfluidic approach: a nanoliter continuous reactor[J]. ACS Applied Materials & Interfaces, 9405(2013).
[61] ZHANG Q, KUANG G, WANG H et al. Multi-bioinspired MOF delivery systems from microfluidics for tumor multimodal therapy[J]. Advanced Science, 2303818(2023).
[62] BAGI S, YUAN S, ROJAS-BUZO S et al. A continuous flow chemistry approach for the ultrafast and low-cost synthesis of MOF-808[J], 9982(2021).
[64] BATENI F, SADEGHI S, OROUJI N et al. Smart dope: a self- driving fluidic lab for accelerated development of doped perovskite quantum dots[J]. Advanced Energy Materials, 2302303(2024).
[65] VOLK A A, EPPS R W, YONEMOTO D et al. Continuous biphasic chemical processes in a four-phase segmented flow reactor[J]. Reaction Chemistry & Engineering, 1367(2021).
[66] ABDEL-LATIF K, EPPS R W, KERR C B et al. Facile room- temperature anion exchange reactions of inorganic perovskite quantum dots enabled by a modular microfluidic platform[J]. Advanced Functional Materials, 1900712(2019).
[67] EPPS R W, BOWEN M S, VOLK A A et al. Artificial chemist: an autonomous quantum dot synthesis bot[J]. Advanced Materials, 2001626(2020).
[68] JIANG X, LI S, SOTOWA K I et al. High throughput continuous synthesis of size-controlled nanoFe3O4 in segmented flow[J]. Chemical Engineering Journal, 144546(2023).
[69] SHEPHERD S J, ISSADORE D, MITCHELL M J. Microfluidic formulation of nanoparticles for biomedical applications[J]. Biomaterials, 120826(2021).
[70] LE P T, AN S H, JEONG H H. Microfluidic Tesla mixer with 3D obstructions to exceptionally improve the curcumin encapsulation of PLGA nanoparticles[J]. Chemical Engineering Journal, 149377(2024).
[71] TROFIMOV A D, IVANOVA A A, ZYUZIN M V et al. Porous inorganic carriers based on silica, calcium carbonate and calcium phosphate for controlled/modulated drug delivery: fresh outlook and future perspectives[J]. Pharmaceutics, 167(2018).
[72] SAYED E, HAJ-AHMAD R, RUPARELIA K et al. Porous inorganic drug delivery systems—a review[J]. AAPS PharmSciTech, 1507(2017).
[73] ZOU Y, HUANG B, CAO L et al. Tailored mesoporous inorganic biomaterials: assembly, functionalization, and drug delivery engineering[J]. Advanced Materials, 2005215(2021).
[74] YAO M, SHI X, ZUO C et al. Engineering of SPECT/photoacoustic imaging/antioxidative stress triple-function nanoprobe for advanced mesenchymal stem cell therapy of cerebral ischemia[J]. ACS Applied Materials & Interfaces, 37885(2020).
[75] SHEN J, MA M, ZHANG H et al. Microfluidics-assisted surface trifunctionalization of a zeolitic imidazolate framework nanocarrier for targeted and controllable multitherapies of tumors[J]. ACS Applied Materials & Interfaces, 45838(2020).
[76] SHEN J, MA M, SHAFIQ M et al. Microfluidics-assisted engineering of pH/enzyme dual-activatable ZIF@polymer nanosystem for co-delivery of proteins and chemotherapeutics with enhanced deep-tumor penetration[J]. Angewandte Chemie International Edition, e202113703(2022).
[77] LIU Z, YANG M, YAO W et al. Microfluidic ultrasonic cavitation enables versatile and scalable synthesis of monodisperse nanoparticles for biomedical application[J]. Chemical Engineering Science, 119052(2023).
[78] ZHAO S, YAO C, DONG Z et al. Role of ultrasonic oscillation in chemical processes in microreactors: a mesoscale issue[J]. Particuology, 88(2020).
[79] ZHAO S, YAO C, LIU L et al. Parametrical investigation of acoustic cavitation and extraction enhancement in ultrasonic microreactors[J]. Chemical Engineering Journal, 138185(2022).
[80] LIU Z, YANG M, DONG Z et al. Cavitation behavior and mixing performance of antisolvent precipitation process in an ultrasonic micromixer[J]. AIChE Journal, e18080(2023).
[81] ZHAO S, YAO C, ZHANG Q et al. Acoustic cavitation and ultrasound-assisted nitration process in ultrasonic microreactors: the effects of channel dimension, solvent properties and temperature[J]. Chemical Engineering Journal, 68(2019).
[82] CHEN Z, PEI Z, ZHAO X et al. Acoustic microreactors for chemical engineering[J]. Chemical Engineering Journal, 133258(2022).
[83] LIU Z, YANG M, ZHAO Q et al. Scale-up of antisolvent precipitation process with ultrasonic microreactors: cavitation patterns, mixing characteristics and application in nanoparticle manufacturing[J]. Chemical Engineering Journal, 146040(2023).
[84] ZHANG Z, XU C, SONG S et al. Ultrasonic enhancement of microdroplet-based interfacial reaction for improving the synthesis of Ag2S QDs[J]. Ultrasonics Sonochemistry, 106411(2023).
[85] MASSAHUD E, AHMED H, AMBATTU L A et al. Acoustomicrofluidic synthesis of ZIF-8/HRP metal-organic framework composites with enhanced enzymatic activity and stability[J]. Materials Today Chemistry, 101694(2023).
[86] FAN C, LUO Y, TIAN M et al. Integrated microsystem toward high-throughput automated green synthesis and Raman enhancement performance screening of noble-metal@Cu-MOF[J]. Advanced Functional Materials, 2211845(2023).
Get Citation
Copy Citation Text
Ruizhi TIAN, Zhengyi LAN, Jie YIN, Nanjing HAO, Hangrong CHEN, Ming MA.
Category:
Received: Oct. 12, 2024
Accepted: --
Published Online: Sep. 2, 2025
The Author Email: Ming MA (mma@mail.sic.ac.cn)