Journal of Applied Optics, Volume. 45, Issue 4, 741(2024)

Weakly supervised image semantic segmentation based on masked consistency mechanism

Jie HU and Haitao ZHAO*
Author Affiliations
  • School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
  • show less
    References(32)

    [1] BEARMAN A, RUSSAKOVSKY O, FERRARI V et al. What’s the point: semantic segmentation with point supervision[C], 549-565(2016).

    [2] LEE S, LEE M, LEE J et al. Railroad is not a train: saliency as pseudo-pixel supervision for weakly supervised semantic segmentation[C], 5495-5505(2021).

    [3] FAN J, ZHANG Z, TAN T et al. Cian: cross-image affinity net for weakly supervised semantic segmentation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 34, 10762-10769(2020).

    [4] YAO Y, CHEN T, XIE G S et al. Non-salient region object mining for weakly supervised semantic segmentation[C], 2623-2632(2021).

    [5] ZHOU T, ZHANG M, ZHAO F et al. Regional semantic contrast and aggregation for weakly supervised semantic segmentation[C], 4299-4309(2022).

    [6] JIANG P T, YANG Y, HOU Q et al. L2g: a simple local-to-global knowledge transfer framework for weakly supervised semantic segmentation[C], 16886-16896(2022).

    [7] AHN J, KWAK S. Learning pixel-level semantic affinity with image-level supervision for weakly supervised SEMANTIC segmentation[C], 4981-4990(2018).

    [8] SELVARAJU R R, COGSWELL M, DAS A et al. Grad-cam: visual explanations from deep networks via gradient-based localization[C], 618-626(2017).

    [9] WANG Y, ZHANG J, KAN M et al. Self-supervised equivariant attention mechanism for weakly supervised semantic segmentation[C], 12275-12284(2020).

    [10] JO S H, YU I J, KIM K S. RecurSeed and CertainMix for weakly supervised semantic segmentation[J]. arXiv preprint arXiv, 1, 2204.06754(2022).

    [12] VASWANI A, SHAZEER N, PARMAR N et al. Attention is all you need[C], 6000-6010(2017).

    [13] GAO W, WAN F, PAN X et al. Ts-cam: token semantic coupled attention map for weakly supervised object localization[C], 2886-2895(2021).

    [14] XU L, OUYANG W, BENNAMOUN M et al. Multi-class token transformer for weakly supervised semantic segmentation[C], 4310-4319(2022).

    [15] HE K, CHEN X, XIE S et al. Masked autoencoders are scalable vision learners[C], 16000-16009(2022).

    [16] HOYER L, DAI D, WANG H et al. MIC: masked image consistency for context-enhanced domain adaptation[C], 11721-11732(2023).

    [19] LI Jiaying, JIANG Wenting, YANG Lin et al. Fine-grained visual classification based on vision transformer[J]. Computer Engineering and Design, 44, 916-921(2023).

    [21] LEE J, KIM E, YOON S. Anti-adversarially manipulated attributions for weakly and semi-supervised semantic segmentation[C], 4071-4080(2021).

    [22] LEE J, CHOI J, MOK J et al. Reducing information bottleneck for weakly supervised semantic segmentation[J]. Advances in Neural Information Processing Systems, 34, 27408-27421(2021).

    [23] FAN J, ZHANG Z, SONG C et al. Learning integral objects with intra-class discriminator for weakly-supervised semantic segmentation[C], 4283-4292(2020).

    [24] WU T, HUANG J, GAO G et al. Embedded discriminative attention mechanism for weakly supervised semantic segmentation[C], 16765-16774(2021).

    [25] XU L, OUYANG W, BENNAMOUN M et al. Leveraging auxiliary tasks with affinity learning for weakly supervised semantic segmentation[C], 6984-6993(2021).

    [26] CHEN L, WU W, FU C et al. Weakly supervised semantic segmentation with boundary exploration[C], 347-362(2020).

    [27] ZHANG D, ZHANG H, TANG J et al. Causal intervention for weakly-supervised semantic segmentation[J]. Advances in Neural Information Processing Systems, 33, 655-666(2020).

    [28] SUN K, SHI H, ZHANG Z et al. Ecs-net: improving weakly supervised semantic segmentation by using connections between class activation maps[C], 7283-7292(2021).

    [29] SU Y, SUN R, LIN G et al. Context decoupling augmentation for weakly supervised semantic segmentation[C], 7004-7014(2021).

    [30] LI Y, KUANG Z, LIU L et al. Pseudo-mask matters in weakly-supervised semantic segmentation[C], 6964-6973(2021).

    [31] LI Y, DUAN Y, KUANG Z et al. Uncertainty estimation via response scaling for pseudo-mask noise mitigation in weakly-supervised semantic segmentation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 36, 1447-1455(2022).

    [32] LEE M, KIM D, SHIM H. Threshold matters in WSSS: manipulating the activation for the robust and accurate segmentation model against thresholds[C], 4330-4339(2022).

    Tools

    Get Citation

    Copy Citation Text

    Jie HU, Haitao ZHAO. Weakly supervised image semantic segmentation based on masked consistency mechanism[J]. Journal of Applied Optics, 2024, 45(4): 741

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jun. 15, 2023

    Accepted: --

    Published Online: Oct. 21, 2024

    The Author Email: Haitao ZHAO (赵海涛)

    DOI:10.5768/JAO202445.0402003

    Topics