Photonics Research, Volume. 10, Issue 5, 1255(2022)

Improving signal-to-background ratio by orders of magnitude in high-speed volumetric imaging in vivo by robust Fourier light field microscopy

Jiazhen Zhai1、†, Ruheng Shi1、†, and Lingjie Kong1,2、*
Author Affiliations
  • 1State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
  • 2IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
  • show less
    References(44)

    [1] M. Levoy, R. Ng, A. Adams, M. Footer, M. Horowitz. Light field microscopy. ACM Trans. Graph., 25, 924-934(2006).

    [2] R. Prevedel, Y. G. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrodel, R. Raskar, M. Zimmer, E. S. Boyden, A. Vaziri. Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy. Nat. Methods, 11, 727-730(2014).

    [3] T. Nobauer, O. Skocek, A. J. Pernia-Andrade, L. Weilguny, F. M. Traub, M. I. Molodtsov, A. Vaziri. Video rate volumetric Ca2+ imaging across cortex using seeded iterative demixing (SID) microscopy. Nat. Methods, 14, 811-818(2017).

    [4] J. Wu, Z. Lu, D. Jiang, Y. Guo, H. Qiao, Y. Zhang, T. Zhu, Y. Cai, X. Zhang, K. Zhanghao, H. Xie, T. Yan, G. Zhang, X. Li, Z. Jiang, X. Lin, L. Fang, B. Zhou, P. Xi, J. Fan, L. Yu, Q. Dai. Iterative tomography with digital adaptive optics permits hour-long intravital observation of 3D subcellular dynamics at millisecond scale. Cell, 184, 3318-3332(2021).

    [5] H. Li, C. Guo, D. Kim-Holzapfel, W. Li, Y. Altshuller, B. Schroeder, W. Liu, Y. Meng, J. B. French, K. I. Takamaru, M. A. Frohman, S. Jia. Fast, volumetric live-cell imaging using high-resolution light-field microscopy. Biomed. Opt. Express, 10, 29-49(2019).

    [6] M. Broxton, L. Grosenick, S. Yang, N. Cohen, A. Andalman, K. Deisseroth, M. Levoy. Wave optics theory and 3-D deconvolution for the light field microscope. Opt. Express, 21, 25418-25439(2013).

    [7] N. Wagner, F. Beuttenmueller, N. Norlin, J. Gierten, J. C. Boffi, J. Wittbrodt, M. Weigert, L. Hufnagel, R. Prevedel, A. Kreshuk. Deep learning-enhanced light-field imaging with continuous validation. Nat. Methods, 18, 557-563(2021).

    [8] Y. Zhang, B. Xiong, Y. Zhang, Z. Lu, J. Wu, Q. Dai. DiLFM: an artifact-suppressed and noise-robust light-field microscopy through dictionary learning. Light Sci. Appl., 10, 152(2021).

    [9] C. Guo, W. Liu, X. Hua, H. Li, S. Jia. Fourier light-field microscopy. Opt. Express, 27, 25573-25594(2019).

    [10] A. Llavador, J. Sola-Pikabea, G. Saavedra, B. Javidi, M. Martinez-Corral. Resolution improvements in integral microscopy with Fourier plane recording. Opt. Express, 24, 20792-20798(2016).

    [11] Y. Xue, G. D. Ian, A. B. David, L. Tian. Single-shot 3D wide-field fluorescence imaging with a Computational Miniature Mesoscope. Sci. Adv., 6, eabb7508(2020).

    [12] X. Hua, W. Liu, S. Jia. High-resolution Fourier light-field microscopy for volumetric multi-color live-cell imaging. Optica, 8, 614-620(2021).

    [13] L. Cong, Z. Wang, Y. Chai, W. Hang, C. Shang, W. Yang, L. Bai, J. Du, K. Wang, Q. Wen. Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio). eLife, 6, e28158(2017).

    [14] R. R. Sims, S. A. Rehman, M. O. Lenz, S. I. Benaissa, E. Bruggeman, A. Clark, E. W. Sanders, A. Ponjavic, L. Muresan, S. F. Lee, K. O’Holleran. Single molecule light field microscopy. Optica, 7, 1065-1072(2020).

    [15] B. J. Chang, J. D. Manton, E. Sapoznik, T. Pohlkamp, T. S. Terrones, E. S. Welf, V. S. Murali, P. Roudot, K. Hake, L. Whitehead, A. G. York, K. M. Dean, R. Fiolka. Real-time multi-angle projection imaging of biological dynamics. Nat. Methods, 18, 829-834(2021).

    [16] J. Mertz. Optical sectioning microscopy with planar or structured illumination. Nat. Methods, 8, 811-819(2011).

    [17] V. Ntziachristos. Going deeper than microscopy: the optical imaging frontier in biology. Nat. Methods, 7, 603-614(2010).

    [18] Y. Zhang, Z. Lu, J. Wu, X. Lin, D. Jiang, Y. Cai, J. Xie, Y. Wang, T. Zhu, X. Ji, Q. Dai. Computational optical sectioning with an incoherent multiscale scattering model for light-field microscopy. Nat. Commun., 12, 6391(2021).

    [19] M. A. Taylor, T. Nöbauer, A. Pernia-Andrade, F. Schlumm, A. Vaziri. Brain-wide 3D light-field imaging of neuronal activity with speckle-enhanced resolution. Optica, 5, 345-353(2018).

    [20] N. Wagner, N. Norlin, J. Gierten, G. de Medeiros, B. Balázs, J. Wittbrodt, L. Hufnagel, R. Prevedel. Instantaneous isotropic volumetric imaging of fast biological processes. Nat. Methods, 16, 497-500(2019).

    [21] D. Wang, S. Xu, P. Pant, E. Redington, S. Soltanian-Zadeh, S. Farsiu, Y. Gong. Hybrid light-sheet and light-field microscope for high resolution and large volume neuroimaging. Biomed. Opt. Express, 10, 6595-6610(2019).

    [22] Y.-G. Yoon, Z. Wang, N. Pak, D. Park, P. Dai, J. S. Kang, H.-J. Suk, P. Symvoulidis, B. Guner-Ataman, K. Wang, E. S. Boyden. Sparse decomposition light-field microscopy for high speed imaging of neuronal activity. Optica, 7, 1457-1468(2020).

    [23] Z. Fu, Q. Geng, J. Chen, L. A. Chu, A. S. Chiang, S. C. Chen. Light field microscopy based on structured light illumination. Opt. Lett., 46, 3424-3427(2021).

    [24] S. Madaan, K. Keomanee-Dizon, M. Jones, C. Zhong, A. Nadtochiy, P. Luu, S. E. Fraser, T. V. Truong. Single-objective selective-volume illumination microscopy enables high-contrast light-field imaging. Opt. Lett., 46, 2860-2863(2021).

    [25] Z. Zhang, L. Bai, L. Cong, P. Yu, T. Zhang, W. Shi, F. Li, J. Du, K. Wang. Imaging volumetric dynamics at high speed in mouse and zebrafish brain with confocal light field microscopy. Nat. Biotechnol., 39, 74-83(2021).

    [26] N. Bozinovic, C. Ventalon, T. Ford, J. Mertz. Fluorescence endomicroscopy with structured illumination. Opt. Express, 16, 8016-8025(2008).

    [27] S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, J. Mertz. Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle. J. Biomed. Opt., 14, 030502(2009).

    [28] D. Lim, K. K. Chu, J. Mertz. Wide-field fluorescence sectioning with hybrid speckle and uniform-illumination microscopy. Opt. Lett., 33, 1819-1821(2008).

    [29] D. Lim, T. Ford, K. Chu, J. Mertz. Optically sectioned in vivo imaging with speckle illumination HiLo microscopy. J. Biomed. Opt., 16, 016014(2011).

    [30] Q. Zhang, D. Pan, N. Ji. High-resolution in vivo optical-sectioning widefield microendoscopy. Optica, 7, 1287-1290(2020).

    [31] T. N. Ford, D. Lim, J. Mertz. Fast optically sectioned fluorescence HiLo endomicroscopy. J. Biomed. Opt., 17, 021105(2012).

    [33] D. Dan, M. Lei, B. Yao, W. Wang, M. Winterhalder, A. Zumbusch, Y. Qi, L. Xia, S. Yan, Y. Yang, P. Gao, T. Ye, W. Zhao. DMD-based LED-illumination super-resolution and optical sectioning microscopy. Sci. Rep., 3, 1116(2013).

    [34] R. Shi, L. Kong. Evaluating structured-illumination patterns in optimizing optical-sectioning of HiLo microscopy. J. Phys. D, 54, 414001(2021).

    [35] H. W. Detrich, H. M. Jung, S. Isogai, M. Westerfield, M. Kamei, L. I. Zon, D. Castranova, A. V. Gore, B. M. Weinstein. Chapter 4 - Imaging blood vessels and lymphatic vessels in the zebrafish. Methods in Cell Biology, 69-103(2016).

    [36] P. Zhou, S. L. Resendez, J. Rodriguez-Romaguera, J. C. Jimenez, S. Q. Neufeld, A. Giovannucci, J. Friedrich, E. A. Pnevmatikakis, G. D. Stuber, R. Hen, M. A. Kheirbek, B. L. Sabatini, R. E. Kass, L. Paninski. Efficient and accurate extraction of in vivo calcium signals from microendoscopic video data. elife, 7, e28728(2018).

    [37] E. Yoshida, S. I. Terada, Y. H. Tanaka, K. Kobayashi, M. Ohkura, J. Nakai, M. Matsuzaki. In vivo wide-field calcium imaging of mouse thalamocortical synapses with an 8 K ultra-high-definition camera. Sci. Rep., 8, 8324(2018).

    [38] F. Appaix, S. Girod, S. Boisseau, J. Römer, J.-C. Vial, M. Albrieux, M. Maurin, A. Depaulis, I. Guillemain, B. van der Sanden. Specific in vivo staining of astrocytes in the whole brain after intravenous injection of sulforhodamine dyes. PLoS ONE, 7, e35169(2012).

    [39] H. Girouard, C. Iadecola. Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J. Appl. Physiol., 100, 328-335(2006).

    [40] J. H. Park, L. Kong, Y. Zhou, M. Cui. Large-field-of-view imaging by multi-pupil adaptive optics. Nat. Methods, 14, 581-583(2017).

    [41] J. L. Fan, J. A. Rivera, W. Sun, J. Peterson, H. Haeberle, S. Rubin, N. Ji. High-speed volumetric two-photon fluorescence imaging of neurovascular dynamics. Nat. Commun., 11, 6020(2020).

    [42] D. Dana, M. D. Walter, S. John. Emerging digital micromirror device (DMD) applications. Proc. SPIE, 4985, 14-25(2003).

    [43] D. H. Kim, J. Kim, J. C. Marques, A. Grama, D. G. C. Hildebrand, W. Gu, J. M. Li, D. N. Robson. Pan-neuronal calcium imaging with cellular resolution in freely swimming zebrafish. Nat. Methods, 14, 1107-1114(2017).

    [44] R. Shi, C. Jin, H. Xie, Y. Zhang, X. Li, Q. Dai, L. Kong. Multi-plane, wide-field fluorescent microscopy for biodynamic imaging in vivo. Biomed. Opt. Express, 10, 6625-6635(2019).

    Tools

    Get Citation

    Copy Citation Text

    Jiazhen Zhai, Ruheng Shi, Lingjie Kong, "Improving signal-to-background ratio by orders of magnitude in high-speed volumetric imaging in vivo by robust Fourier light field microscopy," Photonics Res. 10, 1255 (2022)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Imaging Systems, Microscopy, and Displays

    Received: Dec. 21, 2021

    Accepted: Mar. 16, 2022

    Published Online: Apr. 20, 2022

    The Author Email: Lingjie Kong (konglj@tsinghua.edu.cn)

    DOI:10.1364/PRJ.451895

    Topics