Infrared and Laser Engineering, Volume. 50, Issue 8, 20210396(2021)

Development and application of mid-infrared high-energy, high-power, few-cycle optical parametric chirped pulse amplifier (Invited)

Linzhen He, Kan Tian, Xuemei Yang, and Houkun Liang*
Author Affiliations
  • Institute of Electronic Information, Sichuan University, Chengdu 610065, China
  • show less
    References(36)

    [1] Li J, Ren X, Yin Y, et al. 53-attosecond X-ray pulses reach the carbon K-edge[J]. Nat Commun, 8, 186(2017).

    [2] Colosimo P, Doumy G, Blaga C I, et al. Scaling strong-field interactions towards the classical limit[J]. Nat Phys, 4, 386-389(2008).

    [3] Hohenleutner M, Langer F, Schubert O, et al. Real-time observation of interfering crystal electrons in high-harmonic generation[J]. Nature, 523, 572-575(2015).

    [4] Kara O, Maidment L, Gardiner T, et al. Dual-comb spectroscopy in the spectral fingerprint region using OPGaP optical parametric oscillators[J]. Opt Express, 25, 32713-32721(2017).

    [5] Keilmann F, Gohle C, Holzwarth R, et al. Time-domain mid-infrared frequency-comb spectrometer[J]. Opt Lett, 29, 1542-1544(2004).

    [6] Haas J, Mizaikoff B. Advances in mid-infrared spectroscopy for chemical analysis[J]. Annu Rev Anal Chem, 9, 45-68(2016).

    [7] Deng Y P, Schwarz A, Fattahi H, et al. Carrier-envelope-phase-stable, 1.2 mJ, 1.5 cycle laser pulses at 2.1 μm[J]. Opt Lett, 37, 4973-4975(2012).

    [8] Pupeikis J, Chevreuil P-A, Bigler N, et al. Water window soft x-ray source enabled by a 25 W few-cycle 2.2 μm OPCPA at 100 kHz[J]. Optica, 7, 168-171(2020).

    [9] Zou X, Li W K, Liang H K, et al. 300 μJ, 3 W, few-cycle, 3 μm OPCPA based on periodically poled stoichiometric lithium tantalate crystals[J]. Opt Lett, 44, 2791-2794(2019).

    [10] Zou X, Li W, Qu S, et al. Flat-top pumped multi-millijoule mid-infrared parametric chirped-pulse amplifier at 10 kHz repetition rate[J]. Laser Photonics Rev, 15, 2000292(2021).

    [11] Mark M, Zsuzsanna H, Valentin P, et al. 43 W, 1.55 μm and 12.5 W, 3.1 μm dual-beam, sub-10 cycle, 100 kHz optical parametric chirped pulse amplifier[J]. Opt Lett, 43, 5246-5249(2018).

    [12] Thiré N, Maksimenka R, Kiss B, et al. Highly stable, 15 W, few-cycle, 65 mrad CEPnoise mid-IR OPCPA for statistical physics[J]. Opt Express, 26, 26907-26915(2018).

    [13] Elu U, Baudisch M, Pires H, et al. High average power and single-cycle pulses from a mid-IR optical parametric chirped pulse amplifier[J]. Optica, 4, 1024-1029(2017).

    [14] Andriukaitis G, Balčiūnas T, Ališauskas S, et al. 90 GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier[J]. Opt Lett, 36, 2755-2757(2011).

    [15] Wang P, Li Y, Li W, et al. 2.6 mJ/100 Hz CEP-stable near-single-cycle 4 μm laser based on OPCPA and hollow-core fiber compression[J]. Opt Lett, 43, 2197-2200(2018).

    [16] Fu Y, Xue B, Midorikawa K, et al. TW-scale mid-infrared pulses near 3.3 μmdirectly generated by dual-chirped optical parametric amplification[J]. Appl Phys Lett, 112, 241105(2018).

    [17] He H, Wang Z, Hu C, et al. 520-μJ mid-infrared femtosecond laser at 2.8 μm by 1-kHz KTA optical parametric amplifier[J]. Appl Phys B, 124, 31(2018).

    [18] Yin Y, Li J, Ren X, et al. High-energy two-cycle pulses at 3.2 μm by abroadband-pumped dual-chirped optical parametric amplification[J]. Opt Express, 24, 24989-24998(2016).

    [19] Feng T, Heilmann A, Bock M, et al. 27 W 2.1 μm OPCPA system for coherent soft X-ray generation operating at 10 kHz[J]. Opt Express, 28, 8724-8733(2020).

    [20] Zhao K, Zhong H, Yuan P, et al. Generation of 120 GW mid-infrared pulses from a widely tunable noncollinear optical parametric amplifier[J]. Opt Lett, 38, 2159-2161(2013).

    [21] Grafenstein L, Bock M, Ueberschaer D, et al. 5 μm few-cycle pulses with multi-gigawatt peak power at a 1 kHz repetition rate[J]. Opt Lett, 42, 3796-3799(2017).

    [22] Elu U, Steinle T, Sanchez D, et al. Table-top high-energy 7 μm OPCPA and 260 mJ Ho: YLF pump laser[J]. Opt Lett, 44, 3194-3197(2019).

    [23] Qu S, Liang H K, Liu K, et al. 9 μm few-cycle optical parametric chirped-pulse amplifier based on LiGaS2[J]. Opt Lett, 44, 2422-2425(2019).

    [24] Namboodiri M, Luo C, Indorf G, et al. Optical properties of Li-based nonlinear crystalsfor high power mid-IR OPCPA pumped at 1 μm under realistic operational conditions[J]. Opt Mater Express, 11, 231-239(2021).

    [25] Hrisafov S, Pupeikis J, Chevreuil P A, et al. High-power few-cycle near-infrared OPCPA for soft X-ray generation at 100 kHz[J]. Opt Express, 28, 40145-40154(2020).

    [26] Lam R K, Raj S L, Pascal T A, et al. Soft X-ray second harmonic generation as an interfacial probe[J]. Phys Rev Lett, 120, 023901(2018).

    [27] Johnson A S, Avni T, Larsen E W, et al. Attosecond soft X-ray highharmonic generation[J]. Philos Trans A Math Phys Eng Sci, 377, 20170468(2019).

    [28] Xu X, Zhang Y, Zhang H, et al. Production of 100-TW single attosecond x-ray pulse[J]. Optica, 7, 355-358(2020).

    [29] Nourbakhsh Z, Tancogne-Dejean N, Merdji H, et al. High harmonics and isolated attosecond pulses from MgO[J]. Phys Rev Applied, 15, 014013(2021).

    [30] Xu J, Shen B, Zhang X, et al. Terawatt-scale optical half-cycle attosecond pulses[J]. Sci Rep, 8, 2669(2018).

    [31] Iwakuni K, Okubo S, Tadanaga O, et al. Generation of a frequency comb spanning morethan 3.6 octaves from ultraviolet to mid infrared[J]. Opt Lett, 41, 3980-3983(2016).

    [32] Timmers H, Kowligy A, Lind A, et al. Molecular fingerprinting with bright, broadband infrared frequency combs[J]. Optica, 5, 727-732(2018).

    [33] Nagy Z, Takacs A, Filkorn T, et al. Initial clinical evaluation of an intraocular femtosecond laser in cataract surgery[J]. Journal of Refractive Surgery, 25, 1053-1060(2009).

    [34] Shah R, Shah S. Effect of scanning patterns on the results of femtosecond laser lenticule extraction refractive surgery[J]. Journal of Cataract & Refractive Surgery, 37, 1636-1647(2011).

    [35] Sekundo W, Kunert K, Russmann C, et al. First efficacy and safety study of femtosecond lenticule extraction for the correction of myopia: six-month results[J]. Journal of Cataract & Refractive Surgery, 34, 1513-1520(2008).

    [36] Blum M, Kunert K, Schröder M, et al. Femtosecond lenticule extraction for the correction of myopia: preliminary 6-month results[J]. Graefe's Archive for Clinical and Experimental Ophthalmology, 248, 1019-1027(2010).

    CLP Journals

    [1] Beiyu Wang, Jiaxin Han, Cheng Jin. Features of vortex high harmonics generated by the Laguerre-Gaussian beam with nonzero radial node[J]. Infrared and Laser Engineering, 2022, 51(2): 20210895

    [2] Yuxiu MIAO, Xuemei YANG, Bo HU, Houkun LIANG. Measurement of transmission loss and generation of optical difference frequency in ZnGeP2 waveguide[J]. Infrared and Laser Engineering, 2025, 54(2): 20240429

    Tools

    Get Citation

    Copy Citation Text

    Linzhen He, Kan Tian, Xuemei Yang, Houkun Liang. Development and application of mid-infrared high-energy, high-power, few-cycle optical parametric chirped pulse amplifier (Invited)[J]. Infrared and Laser Engineering, 2021, 50(8): 20210396

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special issue—ultrafast and ultraintense mid-infrared laser technology

    Received: Jun. 11, 2021

    Accepted: --

    Published Online: Nov. 2, 2021

    The Author Email: Houkun Liang (hkliang@scu.edu.cn)

    DOI:10.3788/IRLA20210396

    Topics