Journal of Infrared and Millimeter Waves, Volume. 43, Issue 6, 872(2024)

Attention guided by human keypoint for infrared-visible person re-identification

Peng YU1, Xiao-Jian TIAN2, Nan QI1, and Yan PIAO1、*
Author Affiliations
  • 1School of Electronic and Information Engineering,Changchun University of Science and Technology,Changchun 130022,China
  • 2College of Electronic Science and Engineering,Jilin University,Changchun 130012,China
  • show less
    References(27)

    [1] Gu X, Chang H, Ma B et al. Clothes-changing person Re-identification with RGB modality only[C], 1060-1069(2022).

    [2] Park H, Ham B. Relation network for person re-identification[C], 34, 11839-11847(2020).

    [3] Zhang Z, Lan C, Zeng W et al. Relation-aware global attention for person re-identification[C], 3186-3195(2020).

    [4] Miao J, Wu Y, Yang Y. Identifying visible parts via pose estimation for occluded person re-identification[J]. IEEE Transactions on Neural Networks and Learning Systems, 33, 4624-4634(2022).

    [5] Sun Y, Zheng L, Yang Y et al. Beyond part models: person retrieval with refined part pooling (and a strong convolutional baseline)[C], 480-496(2018).

    [6] Zhu K, Guo H, Zhang S et al. A aformer: auto-aligned transformer for person re-identification[J]. IEEE Transactions on Neural Networks and Learning Systems(2023).

    [7] Ci Y, Wang Y, Chen M et al. UniHCP: a unified model for human-centric perceptions[C], 17840-17852(2023).

    [8] Che J, Zhang Y, Yang Q et al. Research on person re-identification based on posture guidance and feature alignment[J]. Multimedia Systems, 29, 763-770(2023).

    [9] Gu J, Wang K, Luo H et al. MSINet: twins contrastive search of multi-scale interaction for object ReID[C], 19243-19253(2023).

    [10] Pan H, Chen Y, He Z. Multi-granularity graph pooling for video-based person re-identification[J]. Neural Networks, 160, 22-33(2023).

    [11] Zhang G, Zhang H, Lin W et al. Camera contrast learning for unsupervised person re-identification[J]. IEEE Transactions on Circuits and Systems for Video Technology, 33, 4096-4107(2023).

    [12] Hinton G, Vinyals O, Dean J. Distilling the knowledge in a neural network[J]. arXiv preprint, 2015(02531).

    [13] Liu X, Yu C, Zhang P et al. Deeply coupled convolution-transformer with spatial-temporal complementary learning for video-based person re-identification[J]. IEEE Transactions on Neural Networks and Learning Systems, 1-11(2023).

    [14] Wang M, Lai B, Huang J et al. Camera-aware proxies for unsupervised person re-identification[C], 35, 2764-2772(2021).

    [15] Dou Z, Wang Z, Li Y et al. Identity-seeking self-supervised representation learning for generalizable person re-identification[C], 15847-15858(2023).

    [16] Chen Z, Cui Z, Zhang C et al. Dual clustering co-teaching with consistent sample mining for unsupervised person re-identification[J]. IEEE Transactions on Circuits and Systems for Video Technology, 33, 5908-5920(2023).

    [17] Feng J, Wu A, Zhen W. Shape-erased feature learning for visible-infrared person re-identification[C], 22752-22761(2023).

    [18] Saber S, Meshoul S, Amin K et al. A multi-attention approach for person re-identification using deep learning[J]. Sensors, 23, 3678(2023).

    [19] Choi S, Lee S, Kim Y et al. Hi-CMD: hierarchical cross-modality disentanglement for visible-infrared person re-identification[C], 10257-10266(2020).

    [20] Ye M, Shen J, Crandall D J. et al. Dynamic dual-attentive aggregation learning for visible-infrared person re-identification[C]. Glasgow, 229-247(2020).

    [21] Chen Y, Wan L, Li Z et al. Neural feature search for RGB-infrared person re-identification[C], 587-597(2021).

    [22] Lu H, Zou X, Zhang P. Learning progressive modality-shared transformers for effective visible-infrared person re-identification[C], 37, 1835-1843(2023).

    [23] Ye M, Lan X, Li J et al. Hierarchical discriminative learning for visible thermal person re-identification[C], 32(2018).

    [24] Wang G, Zhang T, Cheng J et al. RGB-infrared cross-modality person re-identification via joint pixel and feature alignment[C], 3623-3632(2019).

    [25] Wu A, Zheng W, Yu H et al. RGB-infrared cross-modality person re-identification[C], 5380-5389(2017).

    [26] Ye M, Shen J, Lin G et al. Deep learning for person re-identification: a survey and outlook[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 2872-2893(2022).

    [27] Zhang Y, Wang H. Diverse embedding expansion network and low-light cross-modality benchmark for visible-infrared person re-identification[J]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2153-2162(2023).

    Tools

    Get Citation

    Copy Citation Text

    Peng YU, Xiao-Jian TIAN, Nan QI, Yan PIAO. Attention guided by human keypoint for infrared-visible person re-identification[J]. Journal of Infrared and Millimeter Waves, 2024, 43(6): 872

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Interdisciplinary Research on Infrared Science

    Received: Aug. 9, 2024

    Accepted: --

    Published Online: Dec. 13, 2024

    The Author Email: Yan PIAO (piaoyan@cust.edu.cn)

    DOI:10.11972/j.issn.1001-9014.2024.06.018

    Topics