Opto-Electronic Engineering, Volume. 52, Issue 4, 240273(2025)
Fusion dual-attention retinal disease grading algorithm with PVTv2 and DenseNet121
[2] Sumathi K, Sendhil Kumar K S. A systematic review of fundus image analysis for diagnosing diabetic retinopathy[J]. Int J Intell Syst Appl Eng, 12, 167-181(2024).
[3] Huang J J, Fan J Y, He Y et al. Physical compensation method for dispersion of multiple materials in swept source optical coherence tomography[J]. J Biophotonics, 16, e202300167(2023).
[4] Ge X, Chen S, Lin K et al. Deblurring, artifact-free optical coherence tomography with deconvolution-random phase modulation[J]. Opto-Electron Sci, 3, 230020(2024).
[5] Wang J, Zong Y, He Y et al. Domain adaptation-based automated detection of retinal diseases from optical coherence tomography images[J]. Curr Eye Res, 48, 836-842(2023).
[6] Chen Y W, He Y, Ye H et al. Unified deep learning model for predicting fundus fluorescein angiography image from fundus structure image[J]. J Innov Opt Health Sci, 17, 2450003(2024).
[7] Xu X B, Liu D H, Huang G H et al. Computer aided diagnosis of diabetic retinopathy based on multi-view joint learning[J]. Comput Biol Med, 174, 108428(2024).
[8] Yang J W, Huang J J, He Y et al. Image quality optimization of line-focused spectral domain optical coherence tomography with subsection dispersion compensation[J]. Opto-Electron Eng, 51, 240042(2024).
[9] Yue G H, Li Y, Zhou T W et al. Attention-driven cascaded network for diabetic retinopathy grading from fundus images[J]. Biomed Signal Process Control, 80, 104370(2023).
[10] Khanna M, Singh L K, Thawkar S et al. Deep learning based computer-aided automatic prediction and grading system for diabetic retinopathy[J]. Multimed Tools Appl, 82, 39255-39302(2023).
[11] Durai D B J, Jaya T. Automatic severity grade classification of diabetic retinopathy using deformable ladder Bi attention U-net and deep adaptive CNN[J]. Med Biol Eng Comput, 61, 2091-2113(2023).
[12] Wang Y P, Wang L J, Guo Z Q et al. A graph convolutional network with dynamic weight fusion of multi-scale local features for diabetic retinopathy grading[J]. Sci Rep, 14, 5791(2024).
[13] Ouyang J H, Guo Z Q, Liu S G. Dual-branch hybrid attention decision net for diabetic retinopathy classification[J]. J Jilin Univ (Eng Technol Ed), 52, 648-656(2022).
[14] Vij R, Arora S. A novel deep transfer learning based computerized diagnostic systems for Multi-class imbalanced diabetic retinopathy severity classification[J]. Multimed Tools Appl, 82, 34847-34884(2023).
[15] Wang W H, Xie E Z, Li X et al. Pvt v2: improved baselines with pyramid vision transformer[J]. Comput Visual Med, 8, 415-424(2022).
[16] Vellaichamy A S, Swaminathan A, Varun C et al. Multiple plant leaf disease classification using densenet-121 architecture[J]. Int J Electr Eng Technol, 12, 38-57(2021).
[19] Zhou H, Luo F L, Zhuang H P et al. Attention multihop graph and multiscale convolutional fusion network for hyperspectral image classification[J]. IEEE Trans Geosci Remote Sens, 61, 5508614(2023).
[20] Yang L X, Zhang R Y, Li L D et al. SimAM: a simple, parameter-free attention module for convolutional neural networks[C], 11863-11874(2021).
[22] Mukhoti J, Kulharia V, Sanyal A et al. Calibrating deep neural networks using focal loss[C], 1282(2020).
[23] Liang L M, Jin J X, Feng Y et al. Retinal lesions graded algorithm that integrates coordinate perception and hybrid extraction[J]. Opto-Electron Eng, 51, 230276(2024).
[25] Bhardwaj C, Jain S, Sood M. Transfer learning based robust automatic detection system for diabetic retinopathy grading[J]. Neural Comput Appl, 33, 13999-14019(2021).
[26] Liu D C, Zhao L J, Wang Y et al. Learn from each other to Classify better: cross-layer mutual attention learning for fine-grained visual classification[J]. Pattern Recogn, 140, 109550(2023).
[28] Shaik N S, Cherukuri T K. Lesion-aware attention with neural support vector machine for retinopathy diagnosis[J]. Mach Vis Appl, 32, 126(2021).
[29] Kobat S G, Baygin N, Yusufoglu E et al. Automated diabetic retinopathy detection using horizontal and vertical patch division-based pre-trained DenseNET with digital fundus images[J]. Diagnostics, 12, 1975(2022).
[30] Oulhadj M, Riffi J, Chaimae K et al. Diabetic retinopathy prediction based on deep learning and deformable registration[J]. Multimed Tools Appl, 81, 28709-28727(2022).
Get Citation
Copy Citation Text
Liming Liang, Yi Zhong, Kangquan Chen, Chengbin Wang. Fusion dual-attention retinal disease grading algorithm with PVTv2 and DenseNet121[J]. Opto-Electronic Engineering, 2025, 52(4): 240273
Category: Article
Received: Nov. 22, 2024
Accepted: Jan. 23, 2025
Published Online: Jun. 11, 2025
The Author Email: Yi Zhong (钟奕)