Journal of Inorganic Materials, Volume. 36, Issue 7, 695(2021)
[10] NING L, LI Y, LI W et al. One-step hydrothermal synthesis of TiO2@MoO3 core-shell nanomaterial: microstructure, growth mechanism, and improved photochromic property[J]. Journal of Physical Chemistry C, 120(2016).
[11] POMERANTSEVA E, BONACCORSO F, FENG X et al. Energy storage: the future enabled by nanomaterials[J]. Science, 366(2019).
[15] HAN C, ANDERSEN J, PILLAI S C et al. Chapter green nanotechnology: development of nanomaterials for environmental and energy applications. In sustainable nanotechnology and the environment: advances and achievements[J]. J. Am. Chem. Soc.,, 201-229(1124).
[40] YANG PING-HUI, SUN WEI, HU SI et al. Self-assembly of nanoparticles at interfaces[J]. Progress in Chemistry, 26, 1107-1119(2014).
[42] LI Y J, HUANG W J, SUN S G. A universal approach for the self-assembly of hydrophilic nanoparticles into ordered monolayer films at a toluene/water interface[J]. Angew.Chem. Int. Ed., 118, 2599-2601(2006).
[51] XING L, LI F, XIANG J et al. Single walled carbon nanotubes (SWCNTs) assembled site-selectively on flexible substrate[J]. Key Engineering Materials, 434, 761-763(2010).
[58] JI S, XU L, FU X et al. Light- and metal ion-induced self- assembly and reassembly based on block copolymers containing a photoresponsive polypeptide segment[J]. Macromolecules, 52(2019).
[60] CHEN L, XU M, HU J et al. Light-initiated
[62] CHEN J, XIANG J, YUE X et al. Synthesis of a superhydrophobic polyvinyl alcohol sponge using water as the only solvent for continuous oil-water separation[J]. Journal of Chemistry, 7153109-7153116(2019).
[69] CHOI Y, HO N H, TUNG C H. Sensing phosphatase activity by using gold nanoparticles[J]. Angew. Chem. Int. Ed., 46, 707-709(2007).
[70] LI H, ROTHBERG L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles[J]. Proceedings of the National Academy of Sciences of the United States of America, 101, 14036-14039(2004).
[71] SÖNNICHSEN C, REINHARD B, LIPHARDT J et al. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles[J]. Nat. Biotechnol., 23, 741-745(2005).
[72] REINHARD B, SHEIKHOLESLAMI S, MASTROIANNI A et al. Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single ecorv restriction enzymes[J]. Proceedings of the National Academy of Sciences of the United States of America, 104, 2667-2672(2007).
[73] LIU G, YIN Y, KUNCHAKARRA S et al. A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting[J]. Nat. Nanotechnol., 1, 47-52(2006).
[74] ZHANG D, ZONG X, WU Z et al. Hierarchical self-assembled SnS2 nanoflower/Zn2SnO4 hollow sphere nanohybrid for humidity sensing applications[J]. ACS Appl. Mater. Interfaces, 10, 32631-32639(2018).
[75] YANG H M, MA S, YANG G J et al. Synthesis of La2O3 doped Zn2SnO4 hollow fibers by electrospinning method and application in detecting of acetone[J]. Applied Surface Science, 425, 585-593(2017).
[76] CHEN Z, CAO M, HU C. Novel Zn2SnO4 hierarchical nanostructures and their gas sensing properties toward ethanol[J]. The Journal of Physical Chemistry C, 115, 5522-5529(2011).
[77] WANG W, CHAI H, WANG X et al. Ethanol gas sensing performance of Zn2SnO4 nanopowder prepared
[78] CHANG X, ZHOU Z, CONGDI S et al. Coordination-driven self-assembled metallacycles incorporating pyrene: fluorescence mutability, tunability, and aromatic amine sensing[J]. J. Am. Chem. Soc., 141, 1757-1765(2019).
[79] HE Y, WANG R, JIAO T et al. Facile preparation of self- assembled layered double hydroxide-based composite dye films as new chemical gas sensors[J]. ACS Sustain. Chem. Eng., 7, 10888-10899(2019).
[80] ROSSI N, GROSS B, DIRNBERGER F et al. Magnetic force sensing using a self-assembled nanowire[J]. Nano Letters, 19, 930-936(2019).
[81] LI M, BHILADVALA R B, MORROW T J et al. Bottom-up assembly of large-area nanowire resonator arrays[J]. Nat. Nanotechnol., 3, 88-92(2008).
[82] LISUNOVA Y, HEIDLER J, LEVKIVSKYI I et al. Optimal ferromagnetically-coated carbon nanotube tips for ultra-high resolution magnetic force microscopy[J]. Nanotechnology, 24, 105705(2013).
[83] LI X, YANG T, YANG Y et al. Large-area ultrathin graphene films by single-step marangoni self-assembly for highly sensitive strain sensing application[J]. Adv. Funct. Mater., 26, 1322-1329(2016).
[84] YANG Y, XIAOYU W, QIANLING C et al. Self-assembly of fluorescent organic nanoparticles for iron (iii) sensing and cellular imaging[J]. ACS Appl. Mater. Interfaces, 8, 7440-7448(2016).
[85] RUIBO Z, TANG Q, WANG S et al. Self-assembly of enzyme-like nanofibrous g-molecular hydrogel for printed flexible electrochemical sensors[J]. Adv. Mater., 30, 1706887(2018).
[86] TAO Y, CHU F, GU X et al. A novel electrochemical chiral sensor for tyrosine isomers based on a coordination-driven self-assembly[J]. Sensors and Actuators B: Chemical, 255, 255-261(2017).
[87] KNEIPP J, KNEIPP H, KNEIPP K. SERS-a single-molecule and nanoscale tool for bioanalytics[J]. Chem. Soc. Rev., 37, 1052-1060(2008).
[88] LIU K, ZHAO N, KUMACHEVA E. Self-assembly of inorganic nanorods[J]. Chem. Soc. Rev., 40, 656-671(2011).
[89] MA Y, HUANG Z, LI S et al. Surface-enhanced Raman spectroscopy on self-assembled Au nanoparticles arrays for pesticides residues multiplex detection under complex environment[J]. Nanomaterials, 9, 426(2019).
[90] MAO M, ZHOU B, TANG X et al. Natural deposition strategy for interfacial, self-assembled, large-scale, densely packed, monolayer film with ligand exchanged gold nanorods for
[91] ZHANG Y, TENG Y, REN Z et al. Water/oil interfacial self-assembled gold nanoarrays modified on transparent tape for
[92] TIAN Y, ZHANG H, XU L et al. Self-assembled monolayers of bimetallic Au/Ag nanospheres with superior surface-enhanced Raman scattering activity for ultra-sensitive triphenylmethane dyes detection[J]. Optics Letters, 43, 635-638(2018).
[93] WANG L, QI H, CHEN L et al. Self-assembled Ag-Cu2O nanocomposite films at air-liquid interfaces for surface-enhanced Raman scattering and electrochemical detection of H2O2[J]. Nanomaterials, 8, 332-342(2018).
[94] MILLIKEN S, FRASER J, POIRIER S et al. Self-assembled vertically aligned Au nanorod arrays for surface-enhanced Raman scattering (SERS) detection of Cannabinol[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 196, 222-228(2018).
[95] TIAN X D, LIN Y, DONG J C et al. Synthesis of Ag nanorods with highly tunable plasmonics toward optimal surface-enhanced Raman scattering substrates self-assembled at interfaces[J]. Advanced Optical Materials, 5, 222-228(2017).
[96] FREEMAN R, GRABAR K, ALLISON K et al. Self-assembled metal colloid monolayers: an approach to sers substrates[J]. Science, 267, 1629-1632(1995).
[97] CAMPION A, KAMBHAMPATI P. Surface-enhanced Raman scattering[J]. Chem. Soc. Rev., 27, 241-250(1998).
[98] ZHANG B, WANG H S, LU L et al. Large-area silver coated silicon nanowire arrays for molecular sensing using surface enhanced Raman spectroscopy[J]. Adv. Funct. Mater., 18, 2348-2355(2008).
[99] POTARA M, MANIU D, ASTILEAN S. The synthesis of biocompatible and SERS-active gold nanoparticles using chitosan[J]. Nanotechnology, 20, 315602(2009).
[100] CONG S, YUAN Y, CHEN Z et al. Noble metal-comparable sers enhancement from semiconducting metal oxides by making oxygen vacancies[J]. Nat. Commun., 6, 7800(2015).
[101] LAN C, ZHAO J, ZHANG L et al. Self-assembled nanoporous graphene quantum dot-Mn3O4 nanocomposites for surface- enhanced Raman scattering based identification of cancer cells[J]. RSC Adv., 7, 18658-18667(2017).
[102] YI K, WANG H, LU Y et al. Enhanced Raman scattering by self-assembled silica spherical microparticles[J]. Journal of Applied Physics, 101, 063528(2007).
[103] NG V M H, HUANG H, ZHOU K et al. Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: synthesis and applications[J]. J. Mater. Chem. A, 5, 3039-3068(2016).
[104] CHEN K, YAN X, LI J et al. Preparation of self-assembled composite films constructed by chemically-modified MXene and dyes with surface-enhanced Raman scattering characterization[J]. Nanomaterials, 9, 284(2019).
[105] LIU P, PAN X, YANG W et al. Improved anticorrosion of magnesium alloy
[106] ZHOU Y, HUANG W, LIU J et al. Self-assembly of hyperbranched polymers and its biomedical applications[J]. Adv. Mater., 22, 4567-4590(2010).
[107] KIM B S, CHOI J W. Polyelectrolyte multilayer microcapsules: self-assembly and toward biomedical applications[J]. Biotechnology and Bioprocess Engineering, 12, 323-332(2007).
[108] ZHOU J, PISHKO M, LUTKENHAUS J. Thermo-responsive layer-by-layer assemblies for nanoparticle-based drug delivery[J]. Langmuir, 30, 5903-5910(2014).
[109] PATEL D, RANA D, ASWAL V et al. Influence of graphene on self-assembly of polyurethane and evaluation of its biomedical properties[J]. Polymer, 65, 183-192(2015).
[110] ZHAO H, HE W, WANG Y et al. Biomineralization of large hydroxyapatite particles using ovalbumin as biosurfactant[J]. Materials Letters, 62, 3603-3605(2008).
[111] SAMANO E, PILO-PAIS M, GOLDBERG S et al. Self- assembling DNA templates for programmed artificial biomineralization[J]. Soft Matter, 7, 3240-3245(2011).
[112] GRÖGER C, LUTZ K, BRUNNER E. Biomolecular self-assembly and its relevance in silica biomineralization[J]. Cell Biochemistry and Biophysics, 50, 23-39(2008).
[113] GUNGORMUS M, BRANCO M, FONG H et al. Self assembled bi-functional peptide hydrogels with biomineralization-directing peptides[J]. Biomaterials, 31, 7266-7274(2010).
[114] ZERFASS C, BRAUKMANN S, NIETZSCHE S et al. High yield recombinant production of a self-assembling polycationic peptide for silica biomineralization[J]. Protein Expression and Purification, 108, 1-8(2014).
[115] NEGAH S, KHAKSAR Z, ALIGHOLI H et al. Enhancement of neural stem cell survival, proliferation, migration, and differentiation in a novel self-assembly peptide nanofibber scaffold[J]. Molecular Neurobiology, 54(2016).
[116] OUBERAI M M, GOMES DOS SANTOS A L, MADALLI S et al. Controlling the bioactivity of a peptide hormone
[117] CHEN C, HU J, ZHANG S et al. Molecular mechanisms of antibacterial and antitumor actions of designed surfactant-like peptides[J]. Biomaterials, 33, 592-603(2012).
[118] CHEN C, PAN F, ZHANG S et al. Antibacterial activities of short designer peptides: a link between propensity for nanostructuring and capacity for membrane destabilization[J]. Biomacromolecules, 11, 402-411(2010).
[119] BAI J, CHEN C, WANG J et al. Enzymatic regulation of self- assembling peptide A9K2 nanostructures and hydrogelation with highly selective antibacterial activities[J]. ACS Appl. Mater. Interfaces, 8, 15093-102(2016).
[120] CHEN C, ZHANG Y, FEI R et al. Hydrogelation of the short self-assembling peptide I3QGK regulated by transglutaminase and use for rapid hemostasis[J]. ACS Appl. Mater. Interfaces, 8, 17833-17841(2016).
[121] HU Z, PANTOŞ G D, KUGANATHAN N et al. Interactions between amino acid-tagged naphthalenediimide and single walled carbon nanotubes for the design and construction of new bioimaging probes[J]. Adv. Funct. Mater., 22, 503-518(2012).
[122] HU Z, ARROWSMITH R L, TYSON J A et al. A fluorescent Arg-Gly-Asp (Rgd) peptide-naphthalenediimide (NDI) conjugate for imaging integrin αvβ3
[123] MCCLURE S A, WORFOLK B J, RIDER D A et al. Electrostatic layer-by-layer assembly of CdSe nanorod/polymer nanocomposite thin films[J]. ACS Appl. Mater. Interfaces, 2, 219-229(2010).
[124] GUPTA S, ZHANG Q, EMRICK T et al. “Self-corralling” nanorods under an applied electric field[J]. Nano Letters, 6, 2066-2069(2006).
[125] RIVEST J B, SWISHER S L, FONG L K et al. Assembled monolayer nanorod heterojunctions[J]. ACS Nano, 5, 3811-3816(2011).
[126] WANG W, CHAU Y. Self-Assembled peptide nanorods as building blocks of fractal patterns[J]. Soft Matter, 5, 4893-4898(2009).
[127] LI Z, XING L, XIANG J et al. Morphology controlling of calcium carbonate by self-assembled surfactant micelles on pet substrate[J]. RSC Advances, 4, 31210(2014).
[128] RECHES M, GAZIT E. Casting metal nanowires within discrete self-assembled peptide nanotubes[J]. Science, 300, 625-627(2003).
[129] RECHE S, MEITA L, GAZI T et al. Casting metal nanowires within discrete self-assembled peptide nanotubes[J]. Science, 299, 1877-1881(2003).
[130] MURRAY, ROYCE W. Nanoelectrochemistry: metal nanoparticles, nanoelectrodes, and nanopores[J]. Chem. Rev., 108, 2688-2720(2008).
Get Citation
Copy Citation Text
Huaxin LI, Junyong CHEN, Zhou XIAO, Xian YUE, Xianbo YU, Junhui XIANG.
Category: REVIEW
Received: Aug. 10, 2020
Accepted: --
Published Online: Nov. 25, 2021
The Author Email: Junhui XIANG (xiangjh@ucas.edu.cn)