Infrared and Laser Engineering, Volume. 50, Issue 12, 20211061(2021)

Theory and approach of single-pixel imaging (Invited)

Xinliang Zhai, Xiaoyan Wu*, Yiwei Sun, Jianhong Shi, and Guihua Zeng
Author Affiliations
  • Centre of Quantum Sensing and Information Processing, State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    References(129)

    [1] Bromberg Y, Katz O, Silberberg Y. Ghost imaging with a single detector[J]. Physical Review A, 79, 053840(2009).

    [2] Duarte M F, Davenport M A, Takbar D, et al. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 25, 83-89(2008).

    [3] Sen P, Chen B, Garg G, et al. Dual photography[J]. ACM Transactions on Graph, 24, 745-755(2005).

    [4] Shapiro J H. Computational ghost imaging[J]. Phyical Review A, 78, 061802(2008).

    [5] Edgar M P, Gibson G M, Padgett M J. Principles and prospects for single-pixel imaging[J]. Nature Photonics, 13, 13-20(2019).

    [6] Sun M J, Zhang J M. Single-pixel imaging and its application in three-dimensional reconstruction[J]. Infrared and Laser Engineering, 48, 0603003(2019).

    [7] Graham M G, Steven D J, Miles J P. Single-pixel imaging 12 years on: A review[J]. Optics Express, 28, 28190-28208(2020).

    [8] Catherine F H, Roderick M, Miles J P, et al. Deep learning for real-time single-pixel video[J]. Scientific Report, 8, 2369(2008).

    [9] Jiang W J, Jiao J P, Guo Y, et al. Single-pixel camera based on a spinning mask[J]. Optics Letters, 46, 4859-4862(2021).

    [10] Shi D, Huang J, Wang F, et al. Enhancing resolution of single-pixel imaging system[J]. Optical Review, 22, 802-808(2015).

    [11] Pradeep Sen. On the relationship between dual photography and classical ghost imaging[J]. arXiv preprint, 1309.3007(2013).

    [12] Pittman T B, Shih Y H, Strekalov D V, et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, 52, R3429-R3432(1995).

    [13] Bennink R S, Bentley S J, Boyd R W. "Two-photon" coincidence imaging with a classical source[J]. Physical Review Letters, 89, 113601(2002).

    [14] Gatti A, Brambilla E, Bache M, et al. Correlated imaging: quantum and classical[J]. Physical Review A, 70, 13801-13802(2004).

    [15] Valencia A, Scarcelli G, D' Angelo M, et al. Two-photon imaging with thermal light[J]. Physical Review Letters, 94, 063601(2005).

    [16] Zhai Y H, Chen X H, Zhang D, et al. Two-photon interference with true thermal light[J]. Physical Review A, 72, 043805(2005).

    [17] Scarcelli G, Berardi V, Shih Y. Phase-conjugate mirror via two-photon thermal light imaging[J]. Applied Physics Letters, 88, R3429(2006).

    [18] Shapiro J H, Boyd R W. Response to "The physics of ghost imaging—nonlocal interference or local intensity fluctuation correlation?"[J]. Quantum Information Processing, 11, 1003-1011(2012).

    [19] Chen Z P, Shi J H, Li Y, et al. Super-resolution thermal ghost imaging based on deconvolution[J]. The European Physical Journal-Applied Physics, 67, 10501(2014).

    [20] Chen Z P, Shi J H, Zeng G H. Thermal light ghost imaging based on morphology[J]. Optics Communications, 381, 63-71(2016).

    [21] Chan K W, O'Sullivan M N, Boyd R W. High-order thermal ghost imaging[J]. Optics Letters, 34, 3343-3345(2009).

    [22] Bai Y F, Han S S. Ghost imaging with thermal light by third-order correlation[J]. Physical Review A, 76, 043828(2007).

    [23] Li H, Shi J H, Chen Z P, et al. Detailed quality analysis of ideal high-order thermal ghost imaging[J]. Journal of the Optical Society of America A, 29, 2256-2262(2012).

    [24] Li Hu, Chen Z P, Xiong J, et al. Periodic diffraction correlation imaging without a beam-splitter[J]. Optics Express, 20, 2956-2966(2012).

    [25] Li H, Zhang Y Z, Shi J H, et al. Experimental realization of reflection-type periodic diffraction correlation imaging[J]. Applied Physics Letters, 102, 201901(2013).

    [26] Li H, Shi J H, Zhu Y C, et al. Periodic diffraction correlation imaging through strongly scattering mediums[J]. Applied Physics Letters, 103, 051901(2013).

    [27] Shi D F, Hu S X, Wang Y J. Polarimetric ghost imaging[J]. Optics Letters, 39, 1231-1234(2014).

    [28] Zhu Yongchao, Shi Jianhong, Yang Ying, et al. Polarization difference ghost imaging[J]. Applied Optics, 54, 1279-1284(2015).

    [29] Liu Y X, Shi J H, Zeng G H. Single-photon-counting polarization ghost imaging[J]. Applied Optics, 55, 10347-10351(2016).

    [30] Chen Z P, Li H, Li Y, et al. Temporal ghost imaging with a chaotic laser[J]. Optical Engineering, 52, 076103(2013).

    [31] [31] Baraniuk R. Compressive radar imaging[C]IEEE Radar Conference, 2007: 128133.

    [32] Ma Shuang, Liu Zhentao, Wang Chenglong, et al. Ghost imaging LiDAR via sparsity constraints using push-broom scanning[J]. Optics Express, 27, 13219-13228(2019).

    [33] Howland G A, Dixon P B, Howell J C. Photon-counting compressive sensing laser radar for 3 D imaging[J]. Applied Optics, 50, 5917-5920(2011).

    [34] Joel G, Kalyani K, David B. Compressive single-pixel snapshot x-ray diffraction imaging[J]. Optics Letters, 39, 111-114(2014).

    [35] Yu H, Lu R, Han S, et al. Fourier-transform ghost imaging with hard X rays[J]. Physical Review Letters, 117, 113901(2016).

    [36] Zhang A X, He Y H, Wu L A, et al. Tabletop X-ray ghost imaging with ultra-low radiation[J]. Optica, 5, 374-377(2018).

    [37] Chan W L, Charan K, Takhar D, et al. A single-pixel terahertz imaging system based on compressed sensing[J]. Applied Physics Letters, 93, 121105(2008).

    [38] Shrekenhamer D, Watts C M, Padilla W J. Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator[J]. Optics Express, 21, 12507-12518(2013).

    [39] Hornett S M, Stantchev R I, Vardaki M Z, et al. Subwavelength terahertz imaging of graphene photoconductivity[J]. Nano Letters, 16, 7019-7024(2016).

    [40] Studer V, Bobin J, Chahid M, et al. Compressive fluorescence microscopy for biological and hyperspectral imaging[J]. Proceedings of the National Academy of Sciences, 109, E1679-E1687(2012).

    [41] Welsh S S, Edgar M P, Edgar S S, et al. Fast full-color computational imaging with single-pixel detectors[J]. Optics Express, 21, 23068-23074(2013).

    [42] Jin S L, Hui W W, Wang Y L, et al. Hyperspectral imaging using the single-pixel Fourier transform technique[J]. Scientific Reports, 7, 45209(2017).

    [43] Bian L, Suo J, Situ G H, et al. Multispectral imaging using a single bucket detector[J]. Scientific Reports, 6, 24752(2016).

    [44] Pan L, Deng C Z, Bo Z, et al. Experimental investigation of chirped amplitude modulation heterodyne ghost imaging[J]. Optics Express, 28, 20808-20816(2020).

    [45] He Y H, Huang Y Y, Zeng Z R, et al. Single-pixel imaging with neutrons[J]. Science Bulletin, 66, 133-138(2021).

    [46] Sun B Q, Edgar M P, Bowman R, et al. 3D computational imaging with single-pixel detectors[J]. Science, 340, 844-847(2013).

    [47] Yu W K, Yao X R, Liu X F, et al. Three-dimensional single-pixel compressive reflectivity imaging based on complementary modulation[J]. Applied Optics, 54, 363-367(2015).

    [48] Sun M J, Edgar M P, Gibson G M, et al. Single-pixel three-dimensional imaging with time-based depth resolution[J]. Nature Communications, 7, 12010(2016).

    [49] Zhang Z, Zhong J. Three-dimensional single-pixel imaging with far fewer measurements than effective image pixels[J]. Optics Letters, 41, 2497-2500(2016).

    [50] Zhang Z B, Liu S J, Peng J Z, et al. Simultaneous spatial, spectral, and 3D compressive imaging via efficient Fourier single-pixel measurements[J]. Optica, 5, 315-319(2018).

    [51] Wang M, Sun M J, Huang C. Single-pixel 3D reconstruction via a high-speed LED array[J]. Journal of Physics: Photonics, 2, 025006(2020).

    [52] Ma Y Y, Yin Y K, Jiang S, et al. Single pixel 3D imaging with phase-shifting fringe projection[J]. Optics and Lasers in Engineering, 140, 106532(2021).

    [53] Candès E J, Romberg J K, Tao T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 59, 1207-1223(2006).

    [54] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 52, 1289-1306(2006).

    [55] [55] Wakin M B, Laska J N, Duarte M F, et al. An architecture f compressive imaging[C]International Conference on Image Processing, 2006: 1273–1276.

    [56] Candès E J, Tao T. Near-optimal signal recovery from random projections: Universal encoding strategies?[J]. IEEE Transactions on Information Theory, 52, 5406-5425(2006).

    [57] Katz O, Bromberg Y, Silberberg Y. Compressive ghost imaging[J]. Applied Physics Letters, 95, 739(2009).

    [58] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 60, 84-90(2017).

    [59] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint, 1409.1556(2014).

    [60] [60] Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2015: 19.

    [61] [61] He K M, Zhang X, Ren S, et al. Deep residual learning f image recognition[C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2016: 770778.

    [62] Lyu M, Wang W, Wang H, et al. Deep-learning-based ghost imaging[J]. Scientific Reports, 7, 17865(2017).

    [63] [63] Pratt W K, Kane J, rews H C. Hadamard transfm image coding[C]Proceedings of the IEEE, 1969, 57: 58–68.

    [64] Sloane N J, Harwit M. Masks for Hadamard transform optics, and weighing designs[J]. Applied Optics, 15, 107-114(1976).

    [65] Thibault P, Dierolf M, Menzel A, et al. High-resolution scanning X-ray diffraction microscopy[J]. Science, 321, 379-382(2008).

    [66] Scarcelli G, Berardi V, Shih Y H. Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?[J]. Physical Review Letters, 96, 063602(2006).

    [67] Zhao C Q, Gong W L, Chen M L, et al. Ghost imaging lidar via sparsity constraints[J]. Applied Physics Letters, 101, 141123(2012).

    [68] Hayasaki Y, Sato R. Single-pixel camera with hole-array disk[J]. Optical Review, 27, 252-257(2020).

    [69] Vallés A, He J H, Ohno S, et al. Broadband high-resolution terahertz single-pixel imaging[J]. Optics Express, 28, 28868-28881(2020).

    [70] Radwell N, Mitchell K J, Gibson G M, et al. Single-pixel infrared and visible microscope[J]. Optica, 1, 285-289(2014).

    [71] Liu X L, Shi J H, Wu X, et al. Fast first-photon ghost imaging[J]. Scientific Reports, 8, 1-8(2018).

    [72] Xu Z H, Chen W, Penuelas J, et al. 1000 fps computational ghost imaging using LED-based structured illumination[J]. Optics Express, 26, 2427-2434(2018).

    [73] [73] Komatsu K, Ozeki Y, Nakano Y, et al. Ghost imaging using integrated optical phased array[C]Optical Fiber Communication Conference. IEEE, 2017: 4.

    [74] Li L J, Chen W, Zhao X Y, et al. Fast optical phased array calibration technique for random phase modulation LiDAR[J]. IEEE Photonics Journal, 11, 1-10(2018).

    [75] Wang Y M, Zhou G Y, Zhang X S, et al. 2D broadband beamsteering with large-scale MEMS optical phased array[J]. Optica, 6, 557-562(2019).

    [76] [76] Liu X L, Braverman B, Zeng G H, et al. Using an acoustooptic modulat as a fast spatial light modulat[C]Photonics Nth, IEEE, 2020.

    [77] Liu X L, Shi J H, Sun L, et al. Photon-limited single-pixel imaging[J]. Optics Express, 28, 8132-8144(2020).

    [78] Pratt W K, Kane J, Andrews H C. Hadamard transform image coding[J]. Proceedings of the IEEE, 57, 58-68(1969).

    [79] Geadah Y A, Corinthios M J. Natural, dyadic, and sequency order algorithms and processors for the Walsh-Hadamard transform[J]. IEEE Transactions on Computers, 26, 435-442(1977).

    [80] Vaz P G, Amaral D, Ferreira L R, et al. Image quality of compressive single-pixel imaging using different Hadamard orderings[J]. Optics Express, 28, 11666-11681(2020).

    [81] Yu X, Yang F, Gao B, et al. Deep compressive single pixel imaging by reordering Hadamard basis: a comparative study[J]. IEEE Access, 8, 55773-55784(2020).

    [82] Zhang Z B, Wang X Y, Zheng G A, et al. Hadamard single-pixel imaging versus Fourier single-pixel imaging[J]. Optics Express, 25, 19619-19639(2017).

    [83] Sun M J, Meng L, Edgar M P, et al. Russian dolls ordering of the Hadamard basis for compressive single-pixel imaging[J]. Scientific Reports, 7, 3464(2017).

    [84] Yu W K. Super sub-Nyquist single-pixel imaging by means of cake-cutting Hadamard basis sort[J]. Sensors, 19, 4122(2019).

    [85] Yu W K, Liu Y M. Single-pixel imaging with origami pattern construction[J]. Sensors, 19, 5135(2019).

    [86] Zhang Z B, Ma X, Zhong J G. Single-pixel imaging by means of Fourier spectrum acquisition[J]. Nature Communications, 6, 1-6(2015).

    [87] Zhang Z B, Wang X Y, Zheng G A, et al. Fast Fourier single-pixel imaging via binary illumination[J]. Scientific Reports, 7, 12029(2017).

    [88] Radwell N, Johnson S D, Edgar M P, et al. Deep learning optimized single-pixel lidar[J]. Applied Physics Letters, 115, 231101(2019).

    [89] Cheng Y F, Strachan M, Weiss Z, et al. Illumination pattern design with deep learning for single-shot Fourier ptychographic microscopy[J]. Optics Express, 27, 644-656(2019).

    [90] Dai Q Q, Li F, Cossairt O, et al. Adaptive illumination based depth sensing using deep learning[J]. arXiv preprint, 2103.12297(2021).

    [91] Ferri F, Magatti D, Lugiato L A, et al. Differential ghost imaging[J]. Physical Review Letters, 104, 253603(2020).

    [92] Sun B Q, Welsh S S, Edgar M P, et al. Normalized ghost imaging[J]. Optics Express, 20, 16892-16901(2012).

    [93] Kirmani A, Venkatraman D, Shin D, et al. First-photon imaging[J]. Science, 343, 58-61(2014).

    [94] [94] Liu X L, Shi J H, Chen H C, et al. Firstphoton ghost imaging at low light level[C]CLEO: Applications Technology. Optical Society of America, 2017: AM4 B. 6.

    [95] Liu X L, Sun Y W, Shi J H, et al. Photon efficiency of computational ghost imaging with single-photon detection[J]. Journal of the Optical Society of America A, 35, 1741-1748(2018).

    [96] Candès E J, Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 25, 21-30(2008).

    [97] [97] Takha D, Laska J N, Wakin M B, et al. A new compressive imaging camera architecture using opticaldomain compression[C]Proceedings of SPIE, Computational Imaging IV. International Society f Optics Photonics, 2006, 6065: 606509.

    [98] Buades A, Coll B, Morel J M. A review of image denoising algorithms, with a new one[J]. Multiscale Modeling & Simulation, 4, 490-530(2005).

    [99] Chen Z P, Shi J H, Zeng G H. Object authentication based on compressive ghost imaging[J]. Applied Optics, 55, 8644-8650(2016).

    [100] Shimobaba T, Endo Y, Nishitsuji T, et al. Computational ghost imaging using deep learning[J]. Optics Communications, 413, 147-151(2018).

    [101] He Y C, Wang G, Dong G X, et al. Ghost imaging based on deep learning[J]. Scientific Reports, 8, 6469(2018).

    [102] Wang F, Wang H, Wang H C, et al. Learning from simulation: An end-to-end deep-learning approach for computational ghost imaging[J]. Optics Express, 27, 25560-25572(2019).

    [103] Shang R B, Hoffer-Hawlik K, Wang F, et al. Two-step training deep learning framework for computational imaging without physics priors[J]. Optics Express, 29, 15239-15254(2021).

    [104] Wu H, Wang, R Z, Zhao G P, et al. Deep-learning denoising computational ghost imaging[J]. Optics and Lasers in Engineering, 134, 106183(2020).

    [105] Hoshi I, Shimobaba T, Kakue T, et al. Single-pixel imaging using a recurrent neural network combined with convolutional layers[J]. Optics Express, 28, 34069-34078(2020).

    [106] Liu S P, Meng X F, Yin Y K, et al. Computational ghost imaging based on an untrained neural network[J]. Optics and Lasers in Engineering, 147, 106744(2021).

    [107] Boyde A. Stereoscopic images in confocal (tandem scanning) microscopy[J]. Science, 230, 1270-1272(1985).

    [108] Lazaros N, Sirakoulis G C, Gasteratos A. Review of stereo vision algorithms: from software to hardware[J]. International Journal of Optomechatronics, 2, 435-462(2008).

    [109] Woodham R J. Photometric method for determining surface orientation from multiple images[J]. Optical Engineering, 19, 191139(1980).

    [110] Howland G A, Lum D J, Ware M R, et al. Photon counting compressive depth mapping[J]. Optics Express, 21, 23822-23837(2013).

    [111] Wang C L, Mei X D, Pan L, et al. Airborne near infrared three-dimensional ghost imaging lidar via sparsity constraint[J]. Remote Sensing, 10, 732(2018).

    [112] Wu D X, Luo J, Huang G, et al. Imaging biological tissue with high-throughput single-pixel compressive holography[J]. Nature Communications, 12, 4712(2021).

    [113] Hahamovich E, Monin S, Hazan Y, et al. Single pixel imaging at megahertz switching rates via cyclic Hadamard masks[J]. Nature Communications, 12, 4516(2021).

    [114] Ludwig S, Pedrini G, Peng X. Single-pixel scatter-plate microscopy[J]. Optics Letters, 46, 2473-2476(2021).

    [115] Deng H X, Wang G, Li Q, et al. Transmissive single-pixel microscopic imaging through scattering media[J]. Sensors, 21, 2721(2021).

    [116] Zhang C G, Han B N, He W Q, et al. A novel compressive optical encryption via single-pixel imaging[J]. IEEE Photonics Journal, 11, 7801208(2019).

    [117] Yuan S, Liu X M, Zhou X, et al. Multiple-image encryption scheme with a single pixel detector[J]. Journal of Modern Optics, 63, 1457-1465(2016).

    [118] Yuan S, Yang Y R, Liu X M, et al. Optical image transformation and encryption by phase-retrieval-based double random-phase encoding and compressive ghost imaging[J]. Optics and Lasers in Engineering, 100, 105-110(2018).

    [119] Liu W T, Sun S, Hu H K, et al. Progress and prospect for ghost imaging of moving objects[J]. Laser & Optoelectronics Progress, 58, 1011001(2021).

    [120] Li H, Xiong J, Zeng G H. Lensless ghost imaging for moving objects[J]. Optical Engineering, 50, 127005(2011).

    [121] Sun S, Hu H K, Xu Y K, et al. Single-pixel tracking and imaging under weak illumination[J]. arXiv preprint, 2012.06091(2012).

    [122] Ota S, Horisaki R, Kawamura Y, et al. Ghost cytometry[J]. Science, 360, 1246-1251(2018).

    [123] Deng Q W, Zhang Z B, Zhong Z J. Image-free real-time 3-D tracking of a fast-moving object using dual-pixel detection[J]. Optics Letters, 45, 4734-4737(2020).

    [124] Shi Dongfeng, Yin K X, Huang J, et al. Fast tracking of moving objects using single-pixel imaging[J]. Optics Communications, 440, 155-162(2019).

    [125] Zha L B, Shi D F, Huang J, et al. Single-pixel tracking of fast-moving object using geometric moment detection[J]. Optics Express, 29, 30327-30336(2021).

    [126] Zhai X, Cheng Z D, Wei Y, et al. Compressive sensing ghost imaging object detection using generative adversarial networks[J]. Optical Engineering, 58, 013108(2019).

    [127] Li Y H, Shi J H, Sun L, et al. Single-pixel salient object detection via discrete cosine spectrum acquisition and deep learning[J]. IEEE Photonics Technology Letters, 32, 1381-1384(2020).

    [128] Chen H C, Shi J H, Liu X L, et al. Single-pixel non-imaging object recognition by means of Fourier spectrum acquisition[J]. Optics Communications, 413, 269-75(2018).

    [129] Zhu Y, Shi J H, Wu X Y, et al. Photon-limited non-imaging object detection and classification based on single-pixel imaging system[J]. Applied Physics B, 126, 1-8(2020).

    CLP Journals

    [1] Xu Yang, Yue Ran, Wei Zhou, Baoteng Xu, Jialin Liu, Xibin Yang. Full-color single-pixel endoscopic imaging system[J]. Infrared and Laser Engineering, 2023, 52(10): 20230077

    Tools

    Get Citation

    Copy Citation Text

    Xinliang Zhai, Xiaoyan Wu, Yiwei Sun, Jianhong Shi, Guihua Zeng. Theory and approach of single-pixel imaging (Invited)[J]. Infrared and Laser Engineering, 2021, 50(12): 20211061

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special issue—Single-pixel imaging

    Received: Sep. 13, 2021

    Accepted: --

    Published Online: Feb. 9, 2022

    The Author Email: Xiaoyan Wu (xiaoyanwu@sjtu.edu.cn)

    DOI:10.3788/IRLA20211061

    Topics