Journal of Synthetic Crystals, Volume. 53, Issue 1, 25(2024)

Research Progress on the Preparation and Application of GaAsBi Semiconductor Materials

MA Yulin1,2,3, GUO Xiang1,2,3、*, and DING Zhao1,2,3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(58)

    [1] [1] AHN H J, CHANG W I, KIM S M, et al. 28 GHz GaAs pHEMT MMICs and RF front-end module for 5G communication systems[J]. Microwave and Optical Technology Letters, 2019, 61(4): 878-882.

    [2] [2] GAITONDE J, LOHANI R B. GaAs OPFET for 5G applications[C]//Proceedings of AICTE sponsored International Virtual Conference on Antenna Innovations, 5G Communications and Network Technologies (ICA5 NT 2020), Panchetti, India. 2020: 6-7.

    [3] [3] PIPREK J. Optoelectronic devices[M]. Berlin: Springer Verlag, 2004.

    [4] [4] PIPREK J. Semiconductor optoelectronic devices: introduction to physics and simulation[M]. Newyork: Academic Press, 2003.

    [5] [5] FREGOLENT M, BUFFOLO M, DE SANTI C, et al. Deep levels and carrier capture kinetics in n-GaAsBi alloys investigated by deep level transient spectroscopy[J]. Journal of Physics D: Applied Physics, 2021, 54(34): 345109.

    [6] [6] LIU X, WANG L J, FANG X A, et al. Continuous wave operation of GaAsBi microdisk lasers at room temperature with large wavelengths ranging from 127 to 141 μm[J]. Photonics Research, 2019, 7(5): 508.

    [7] [7] WU X Y, PAN W W, ZHANG Z P, et al. 1.142 μm GaAsBi/GaAs quantum well lasers grown by molecular beam epitaxy[J]. ACS Photonics, 2017, 4(6): 1322-1326.

    [8] [8] RICHARDS R D, BAILEY N J, LIU Y C, et al. GaAsBi: from molecular beam epitaxy growth to devices[J]. Physica Status Solidi (b), 2022, 259(2): 2100330.

    [9] [9] PAN W W, WANG L J, ZHANG Y C, et al. MBE growth strategy and optimization of GaAsBi quantum well light emitting structure beyond 1.2 μm[J]. Applied Physics Letters, 2019, 114(15): 152102.

    [10] [10] ARLAUSKAS A, SVIDOVSKY P, BERTULIS K, et al. GaAsBi photoconductive terahertz detector sensitivity at long excitation wavelengths[J]. Applied Physics Express, 2012, 5(2): 022601.

    [11] [11] PACˇEBUTAS V, STANIONYT S, ARLAUSKAS A, et al. Terahertz excitation spectra of GaAsBi alloys[J]. Journal of Physics D: Applied Physics, 2018, 51(47): 474001.

    [12] [12] PATIL P K, LUNA E, MATSUDA T, et al. GaAsBi/GaAs multi-quantum well LED grown by molecular beam epitaxy using a two-substrate-temperature technique[J]. Nanotechnology, 2017, 28(10): 105702.

    [13] [13] THOMAS T, MELLOR A, HYLTON N P, et al. Requirements for a GaAsBi 1 eV sub-cell in a GaAs-based multi-junction solar cell[J]. Semiconductor Science and Technology, 2015, 30(9): 094010.

    [14] [14] BALANTA M G, KOPACZEK J, ORSI GORDO V, et al. Optical and spin properties of localized and free excitons in GaBixAs1-x/GaAs multiple quantum wells[J]. Journal of Physics D: Applied Physics, 2016, 49(35): 355104.

    [15] [15] UEDA O, IKENAGA N, HORITA Y, et al. Structural evaluation of GaAs1-xBix obtained by solid-phase epitaxial growth of amorphous GaAs1-xBix thin films deposited on (0 0 1) GaAs substrates[J]. Journal of Crystal Growth, 2023, 601: 126945.

    [16] [16] TOMINAGA Y, KINOSHITA Y, FENG G, et al. Growth of GaAs1-xBix/GaAs multi-quantum wells by molecular beam epitaxy[J]. Physica Status Solidi C, 2008, 5(9): 2719-2721.

    [17] [17] ROY D, SAMAJDAR D P, BISWAS A. Photovoltaic performance improvement of GaAs1-xBix nanowire solar cells in terms of light trapping capability and efficiency[J]. Solar Energy, 2021, 221: 468-475.

    [18] [18] DAS S, SHARMA A S, DAS T D, et al. Dependence of heavy hole exciton binding energy and the strain distribution in GaAs1-xBix/GaAs finite spherical quantum dots on Bi content in the material[J]. Superlattices and Microstructures, 2015, 86: 221-227.

    [19] [19] PTAK A J, FRANCE R, BEATON D A, et al. Kinetically limited growth of GaAsBi by molecular-beam epitaxy[J]. Journal of Crystal Growth, 2012, 338(1): 107-110.

    [20] [20] RAJPALKE M K, LINHART W M, BIRKETT M, et al. Growth and properties of GaSbBi alloys[J]. Applied Physics Letters, 2013, 103(14): 142106.

    [21] [21] SVENSSON S P, HIER H, SARNEY W L, et al. Molecular beam epitaxy control and photoluminescence properties of InAsBi[J]. Journal of Vacuum Science & Technology B, 2012, 30(2): 02B109.

    [22] [22] WANG K, GU Y, ZHOU H F, et al. InPBi single crystals grown by molecular beam epitaxy[J]. Scientific Reports, 2014, 4: 5449.

    [23] [23] LEVANDER A X, NOVIKOV S V, LILIENTAL-WEBER Z, et al. Growth and transport properties of p-type GaNBi alloys[J]. Journal of Materials Research, 2011, 26(23): 2887-2894.

    [24] [24] DANG P, JENA D. Molecular beam epitaxy and magnetotransport of InBi and InNBi crystals for high spin-orbit interaction[C]. APS March Meeting Abstracts, 2018

    [25] [25] WANG S M, LU P F. Bismuth-containing alloys and nanostructures[M]. Berlin: Springer, 2019.

    [26] [26] OE K, OKAMOTO H. New semiconductor alloy GaAs1-xBix grown by metal organic vapor phase epitaxy[J]. Japanese Journal of Applied Physics, 1998, 37(11A): L1283.

    [27] [27] YOSHIMOTO M, MURATA S, CHAYAHARA A, et al. Metastable GaAsBi alloy grown by molecular beam epitaxy[J]. Japanese Journal of Applied Physics, 2003, 42(Part 2, No. 10B): L1235-L1237.

    [28] [28] LU X, BEATON D A, LEWIS R B, et al. Effect of molecular beam epitaxy growth conditions on the Bi content of GaAs1-xBix[J]. Applied Physics Letters, 2008, 92(19): 192110.

    [29] [29] LEWIS R B, MASNADI-SHIRAZI M, TIEDJE T. Growth of high Bi concentration GaAs1-xBix by molecular beam epitaxy[J]. Applied Physics Letters, 2012, 101(8): 082112.

    [30] [30] KINI R N, BHUSAL L, PTAK A J, et al. Electron hall mobility in GaAsBi[J]. Journal of Applied Physics, 2009, 106(4): 043705.

    [31] [31] KINI R N, PTAK A J, FLUEGEL B, et al. Effect of Bi alloying on the hole transport in the dilute bismide alloy GaAs1-x Bix[J]. Physical Review B, 2011, 83(7): 075307.

    [32] [32] KADO K, FUYUKI T, YAMADA K, et al. High hole mobility in GaAs1-xBix alloys[J]. Japanese Journal of Applied Physics, 2012, 51(4R): 040204.

    [33] [33] PETTINARI G, A PATAN, POLIMENI A, et al. Bi-induced p-type conductivity in nominally undoped Ga(AsBi)[J]. Applied Physics Letters, 2012, 100(9): 092109.

    [34] [34] MOHMAD A R, BASTIMAN F, HUNTER C J, et al. Localization effects and band gap of GaAsBi alloys[J]. Physica Status Solidi (B), 2014, 251(6): 1276-1281.

    [35] [35] TAIT C R, YAN L F, MILLUNCHICK J M. Droplet induced compositional inhomogeneities in GaAsBi[J]. Applied Physics Letters, 2017, 111(4): 042105.

    [36] [36] STEVENS M A, GROSSKLAUS K A, VANDERVELDE T E. Strain stabilization of far from equilibrium GaAsBi films[J]. Journal of Crystal Growth, 2019, 527: 125216.

    [37] [37] REYES D F, BASTIMAN F, HUNTER C J, et al. Bismuth incorporation and the role of ordering in GaAsBi/GaAs structures[J]. Nanoscale Research Letters, 2014, 9(1): 23.

    [38] [38] HONOLKA J, HOGAN C, VONDRCˇEK M, et al. Electronic properties of GaAsBi(001) alloys at low Bi content[J]. Physical Review Materials, 2019, 3(4): 044601.

    [39] [39] PATIL P, TATEBE T, NABARA Y, et al. Growth of GaAsBi/GaAs multi quantum wells on (100) GaAs substrates by molecular beam epitaxy[J]. e-Journal of surface science and nanotechnology, 2015, 13: 469-473.

    [40] [40] PATIL P K, SHIMOMURA S, ISHIKAWA F, et al. Strategic molecular beam epitaxial growth of GaAs/GaAsBi heterostructures and nanostructures[M]//WANG S, LU P. Bismuth-Containing Alloys and Nanostructures. Singapore: Springer, 2019: 59-96.

    [41] [41] RICHARDS R D, BASTIMAN F, HUNTER C J, et al. Molecular beam epitaxy growth of GaAsBi using As2 and As4[J]. Journal of Crystal Growth, 2014, 390: 120-124.

    [42] [42] PATIL P K, ISHIKAWA F, SHIMOMURA S. GaAsBi/GaAs MQWs grown by MBE using a two-substrate-temperature technique[J]. Journal of Alloys and Compounds, 2017, 725: 694-699.

    [43] [43] CHAKIR K, BILEL C, HABCHI M M, et al. Discontinuities and bands alignments of strain-balanced III-V-N/III-V-Bi heterojunctions for mid-infrared photodetectors[J]. Superlattices and Microstructures, 2017, 102: 56-63.

    [44] [44] MOHMAD A R, BASTIMAN F, HUNTER C J, et al. Bismuth concentration inhomogeneity in GaAsBi bulk and quantum well structures[J]. Semiconductor Science and Technology, 2015, 30(9): 094018.

    [45] [45] AHN N, ARAKI Y, KONDOW M, et al. Effects of growth interruption, As and Ga fluxes, and nitrogen plasma irradiation on the molecular beam epitaxial growth of GaAs/GaAsN core-shell nanowires on Si(111)[J]. Japanese Journal of Applied Physics, 2014, 53(6): 065001.

    [46] [46] BLEL S, BILEL C. Atomistic mechanism effects on the growth of GaAsBi and GaAs nanowires[J]. Solid State Communications, 2022, 347: 114722.

    [48] [48] DASIKA V D, KRIVOY E M, NAIR H P, et al. Increased InAs quantum dot size and density using bismuth as a surfactant[J]. Applied Physics Letters, 2014, 105(25): 253104.

    [49] [49] WANG L J, LIANG H, SHEN Z H, et al. Bismuth-related nanostructures[M]//WANG S, LU P. Bismuth-Containing Alloys and Nanostructures. Singapore: Springer, 2019: 181-199.

    [50] [50] WU M J, LUNA E, PUUSTINEN J, et al. Formation and phase transformation of Bi-containing QD-like clusters in annealed GaAsBi[J]. Nanotechnology, 2014, 25(20): 205605.

    [51] [51] LUNA E, WU M, HANKE M, et al. Spontaneous formation of three-dimensionally ordered Bi-rich nanostructures within GaAs1-xBix/GaAs quantum wells[J]. Nanotechnology, 2016, 27(32): 325603.

    [52] [52] SKAPAS M, STANIONYT S, PAULAUSKAS T, et al. HRTEM study of size-controlled Bi quantum dots in annealed GaAsBi/AlAs multiple quantum well structure[J]. Physica Status Solidi (B), 2019, 256(5): 1800365.

    [53] [53] FITOURI H, CHAKIR K, CHINE Z, et al. Photoluminescence of GaAsBi/GaAs quantum dots grown by metalorganic vapor phase epitaxy[J]. Materials Letters, 2015, 152: 45-47.

    [54] [54] PAN W W, ZHANG L Y, ZHU L A, et al. Optical properties and band bending of InGaAs/GaAsBi/InGaAs type-II quantum well grown by gas source molecular beam epitaxy[J]. Journal of Applied Physics, 2016, 120(10): 105702.

    [55] [55] GLEMA J, PALENSKIS V, GEIUTIS A, et al. Low-frequency noise investigation of 1.09 μm GaAsBi laser diodes[J]. Materials, 2019, 12(4): 673.

    [56] [56] BATOOL Z, HILD K, HOSEA T J C, et al. The electronic band structure of GaBiAs/GaAs layers: influence of strain and band anti-crossing[J]. Journal of Applied Physics, 2012, 111(11): 113108.

    [57] [57] HOSSAIN N, MARKO I P, JIN S R, et al. Recombination mechanisms and band alignment of GaAs1-xBix/GaAs light emitting diodes[J]. Applied Physics Letters, 2012, 100(5): 051105.

    [58] [58] LUDEWIG P, KNAUB N, HOSSAIN N, et al. Electrical injection Ga(AsBi)/(AlGa)As single quantum well laser[J]. Applied Physics Letters, 2013, 102(24): 242115.

    [59] [59] RICHARDS R D, HUNTER C J, BASTIMAN F, et al. Telecommunication wavelength GaAsBi light emitting diodes[J]. IET Optoelectronics, 2016, 10(2): 34-38.

    Tools

    Get Citation

    Copy Citation Text

    MA Yulin, GUO Xiang, DING Zhao. Research Progress on the Preparation and Application of GaAsBi Semiconductor Materials[J]. Journal of Synthetic Crystals, 2024, 53(1): 25

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 4, 2023

    Accepted: --

    Published Online: May. 31, 2024

    The Author Email: GUO Xiang (xguo@gzu.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics