Chinese Journal of Lasers, Volume. 50, Issue 1, 0113012(2023)

Plasmonic Nanopores for Single-Molecule Optical Detection Applications

Siyuan Wang1,2, Hongyao Liu1、*, Xinchao Lu1、**, and Chengjun Huang1,2、***
Author Affiliations
  • 1Health Electronics R&D Center, Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China
  • 2School of Integrated Circuits, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    References(76)

    [1] Liu F F, Zhao X P, Kang B et al. Non-linear mass transport in confined nanofluidic devices for label-free bioanalysis/sensors[J]. TrAC Trends in Analytical Chemistry, 123, 115760(2020).

    [2] Xue L, Yamazaki H, Ren R et al. Solid-state nanopore sensors[J]. Nature Reviews Materials, 5, 931-951(2020).

    [3] Spitzberg J D, Zrehen A, van Kooten X F et al. Plasmonic-nanopore biosensors for superior single-molecule detection[J]. Advanced Materials, 31, e1900422(2019).

    [4] Lin Y, Ying Y L, Long Y T. Nanopore confinement for electrochemical sensing at the single-molecule level[J]. Current Opinion in Electrochemistry, 7, 172-178(2018).

    [5] Maier S A[M]. Plasmonics: fundamentals and applications(2007).

    [6] Wang L, Zhang L. Narrow-spectrum enhanced sensor based on surface plasmon resonator[J]. Acta Optica Sinica, 41, 0724001(2021).

    [7] Garoli D, Yamazaki H, Maccaferri N et al. Plasmonic nanopores for single-molecule detection and manipulation: toward sequencing applications[J]. Nano Letters, 19, 7553-7562(2019).

    [8] Lu W L, Hu R, Tong X et al. Electro-optical detection of single molecules based on solid-state nanopores[J]. Small Structures, 1, 2000003(2020).

    [9] Peng X L, Kotnala A, Rajeeva B B et al. Plasmonic nanotweezers and nanosensors for point-of-care applications[J]. Advanced Optical Materials, 9, 2100050(2021).

    [10] Verschueren D, Shi X, Dekker C. Nano-optical tweezing of single proteins in plasmonic nanopores[J]. Small Methods, 3, 1800465(2019).

    [11] Maccaferri N, Barbillon G, Koya A N et al. Recent advances in plasmonic nanocavities for single-molecule spectroscopy[J]. Nanoscale Advances, 3, 633-642(2021).

    [12] Xiang S, Zhang X Y, Deng L G. Plasmon mode coupling relationship and optical properties of composite structure[J]. Laser & Optoelectronics Progress, 58, 0924001(2021).

    [13] Assad O N, Gilboa T, Spitzberg J et al. Light-enhancing plasmonic-nanopore biosensor for superior single-molecule detection[J]. Advanced Materials, 29, 1605442(2017).

    [14] Ohayon S, Girsault A, Nasser M et al. Simulation of single-protein nanopore sensing shows feasibility for whole-proteome identification[J]. PLoS Computational Biology, 15, e1007067(2019).

    [15] Chen C, Hutchison J A, Clemente F et al. Direct evidence of high spatial localization of hot spots in surface-enhanced Raman scattering[J]. Angewandte Chemie (International Edition in English), 48, 9932-9935(2009).

    [16] Chen C, Hutchison J A, van Dorpe P et al. Focusing plasmons in nanoslits for surface-enhanced Raman scattering[J]. Small, 5, 2876-2882(2009).

    [17] Chen C, Juan M L, Li Y et al. Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity[J]. Nano Letters, 12, 125-132(2012).

    [18] Chen C, Ye J, Li Y et al. Detection of DNA bases and oligonucleotides in plasmonic nanoslits using fluidic SERS[J]. IEEE Journal of Selected Topics in Quantum Electronics, 19, 4600707(2013).

    [19] Li Y, Chen C, Kerman S et al. Harnessing plasmon-induced ionic noise in metallic nanopores[J]. Nano Letters, 13, 1724-1729(2013).

    [20] Chen C, Xu X M, Li Y et al. Full wetting of plasmonic nanopores through two-component droplets[J]. Chemical Science, 6, 6564-6571(2015).

    [21] Kerman S, Chen C, Li Y et al. Raman fingerprinting of single dielectric nanoparticles in plasmonic nanopores[J]. Nanoscale, 7, 18612-18618(2015).

    [22] Li Y, Chen C, Willems K et al. Asymmetric plasmonic induced ionic noise in metallic nanopores[J]. Nanoscale, 8, 12324-12329(2016).

    [23] Chen C, Li Y, Kerman S et al. High spatial resolution nanoslit SERS for single-molecule nucleobase sensing[J]. Nature Communications, 9, 1733(2018).

    [24] Crick C R, Albella P, Ng B et al. Precise attoliter temperature control of nanopore sensors using a nanoplasmonic bullseye[J]. Nano Letters, 15, 553-559(2015).

    [25] Crick C R, Albella P, Kim H J et al. Low-noise plasmonic nanopore biosensors for single molecule detection at elevated temperatures[J]. ACS Photonics, 4, 2835-2842(2017).

    [26] Zhang Y Q, Min C J, Dou X J et al. Plasmonic tweezers: for nanoscale optical trapping and beyond[J]. Light: Science & Applications, 10, 59(2021).

    [27] Zhang W J, Zhang Y Q, Zhang S S et al. Nonlinear modulation on optical trapping in a plasmonic bowtie structure[J]. Optics Express, 29, 11664-11673(2021).

    [28] Jiang Q B, Roy P, Claude J B et al. Single photon source from a nanoantenna-trapped single quantum dot[J]. Nano Letters, 21, 7030-7036(2021).

    [29] Verschueren D, Pud S, Shi X et al. Label-free optical detection of DNA translocations through plasmonic nanopores[J]. ACS Nano, 13, 61-70(2019).

    [30] Shi X, VVerschueren D V, Dekker C. Active delivery of single DNA molecules into a plasmonic nanopore for label-free optical sensing[J]. Nano Letters, 18, 8003-8010(2018).

    [31] Shi X, Verschueren D, Pud S et al. Integrating sub-3 nm plasmonic gaps into solid-state nanopores[J]. Small, 14, e1703307(2018).

    [32] Fotouhi B, Ahmadi V, Faramarzi V. Nano-plasmonic-based structures for DNA sequencing[J]. Optics Letters, 41, 4229-4232(2016).

    [33] Belkin M, Aksimentiev A. Molecular dynamics simulation of DNA capture and transport in heated nanopores[J]. ACS Applied Materials & Interfaces, 8, 12599-12608(2016).

    [34] Pud S, Verschueren D, Vukovic N et al. Self-aligned plasmonic nanopores by optically controlled dielectric breakdown[J]. Nano Letters, 15, 7112-7117(2015).

    [35] Belkin M, Chao S H, Jonsson M P et al. Plasmonic nanopores for trapping, controlling displacement, and sequencing of DNA[J]. ACS Nano, 9, 10598-10611(2015).

    [36] Nicoli F, Verschueren D, Klein M et al. DNA translocations through solid-state plasmonic nanopores[J]. Nano Letters, 14, 6917-6925(2014).

    [37] Lee T, Lee E, Oh S et al. Imaging heterogeneous nanostructures with a plasmonic resonant ridge aperture[J]. Nanotechnology, 24, 145502(2013).

    [38] Jonsson M P, Dekker C. Plasmonic nanopore for electrical profiling of optical intensity landscapes[J]. Nano Letters, 13, 1029-1033(2013).

    [39] Peri S S S, Sabnani M K, Raza M U et al. Quantification of low affinity binding interactions between natural killer cell inhibitory receptors and targeting ligands with a self-induced back-action actuated nanopore electrophoresis (SANE) sensor[J]. Nanotechnology, 32, 045501(2021).

    [40] Jiang Q B, Rogez B, Claude J B et al. Quantifying the role of the surfactant and the thermophoretic force in plasmonic nano-optical trapping[J]. Nano Letters, 20, 8811-8817(2020).

    [41] Peri S S S, Sabnani M K, Raza M U et al. Detection of specific antibody-ligand interactions with a self-induced back-action actuated nanopore electrophoresis sensor[J]. Nanotechnology, 31, 085502(2019).

    [42] Jiang Q B, Rogez B, Claude J B et al. Temperature measurement in plasmonic nanoapertures used for optical trapping[J]. ACS Photonics, 6, 1763-1773(2019).

    [43] Raza M U, Peri S S S, Ma L C et al. Self-induced back action actuated nanopore electrophoresis (SANE)[J]. Nanotechnology, 29, 435501(2018).

    [44] Dai X, Fu W H, Chi H Y et al. Optical tweezers-controlled hotspot for sensitive and reproducible surface-enhanced Raman spectroscopy characterization of native protein structures[J]. Nature Communications, 12, 1292(2021).

    [45] Duan H G, Fernández-Domínguez A I, Bosman M et al. Nanoplasmonics: classical down to the nanometer scale[J]. Nano Letters, 12, 1683-1689(2012).

    [46] Ward D R, Hüser F, Pauly F et al. Optical rectification and field enhancement in a plasmonic nanogap[J]. Nature Nanotechnology, 5, 732-736(2010).

    [47] Laible F, Horneber A, Fleischer M. Mechanically tunable nanogap antennas: single-structure effects and multi-structure applications[J]. Advanced Optical Materials, 9, 2100326(2021).

    [48] Su K H, Wei Q H, Zhang X et al. Interparticle coupling effects on plasmon resonances of nanogold particles[J]. Nano Letters, 3, 1087-1090(2003).

    [49] Sundaramurthy A, Crozier K B, Kino G S et al. Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles[J]. Physical Review B, 72, 165409(2005).

    [50] Rong S, Liu H S, Zhong Y et al. Enhancement of Raman spectra based on optical trapping of gold nanocubes[J]. Acta Optica Sinica, 41, 1730003(2021).

    [51] Huang J A, Mousavi M Z, Giovannini G et al. Multiplexed discrimination of single amino acid residues in polypeptides in a single SERS hot spot[J]. Angewandte Chemie (International Edition in English), 59, 11423-11431(2020).

    [52] Huang J A, Mousavi M Z, Zhao Y Q et al. SERS discrimination of single DNA bases in single oligonucleotides by electro-plasmonic trapping[J]. Nature Communications, 10, 5321(2019).

    [53] Liu H L, Cao J, Hanif S et al. Size-controllable gold nanopores with high SERS activity[J]. Analytical Chemistry, 89, 10407-10413(2017).

    [54] Chang M G, Morgan G, Bedier F et al. Review-recent advances in nanosensors built with pre-pulled glass nanopipettes and their applications in chemical and biological sensing[J]. Journal of the Electrochemical Society, 167, 037533(2020).

    [55] Freedman K J, Crick C R, Albella P et al. On-demand surface-and tip-enhanced Raman spectroscopy using dielectrophoretic trapping and nanopore sensing[J]. ACS Photonics, 3, 1036-1044(2016).

    [56] Yang J M, Pan Z Q, Qin F F et al. An in situ SERS study of ionic transport and the Joule heating effect in plasmonic nanopores[J]. Chemical Communications, 54, 13236-13239(2018).

    [57] Nie X L, Liu H L, Pan Z Q et al. Recognition of plastic nanoparticles using a single gold nanopore fabricated at the tip of a glass nanopipette[J]. Chemical Communications, 55, 6397-6400(2019).

    [58] Cao J, Liu H L, Yang J M et al. SERS detection of nucleobases in single silver plasmonic nanopores[J]. ACS Sensors, 5, 2198-2204(2020).

    [59] Shen Q, Zhou P L, Huang B T et al. Mass transport through a sub-10 nm single gold nanopore: SERS and ionic current measurement[J]. Journal of Electroanalytical Chemistry, 894, 115373(2021).

    [60] Zhou J, Zhou P L, SShen Q et al. Probing multidimensional structural information of single molecules transporting through a sub-10 nm conical plasmonic nanopore by SERS[J]. Analytical Chemistry, 93, 11679-11685(2021).

    [61] Demaille C, Brust M, Tsionsky M et al. Fabrication and characterization of self-assembled spherical gold ultramicroelectrodes[J]. Analytical Chemistry, 69, 2323-2328(1997).

    [62] Xu J G, Wang Z B[M]. Fluorimetry(2006).

    [63] Ding S S, Liu C Y, Fu D Y et al. Coordination of ligand-protected metal nanoclusters and glass nanopipettes: conversion of a liquid-phase fluorometric assay into an enhanced nanopore analysis[J]. Analytical Chemistry, 93, 1779-1785(2021).

    [64] Zambrana-Puyalto X, Ponzellini P, Maccaferri N et al. Förster-resonance energy transfer between diffusing molecules and a functionalized plasmonic nanopore[J]. Physical Review Applied, 14, 054065(2020).

    [65] Maccaferri N, Ponzellini P, Giovannini G et al. FRET characterization of hollow plasmonic nanoantennas[J]. Proceedings of SPIE, 10894, 201-207(2019).

    [66] Shi X, Gao R, Ying Y L et al. A scattering nanopore for single nanoentity sensing[J]. ACS Sensors, 1, 1086-1090(2016).

    [67] Zrimsek A B, Chiang N H, Mattei M et al. Single-molecule chemistry with surface-and tip-enhanced Raman spectroscopy[J]. Chemical Reviews, 117, 7583-7613(2017).

    [68] Zong C, Xu M X, Xu L J et al. Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges[J]. Chemical Reviews, 118, 4946-4980(2018).

    [69] Wang X, Huang S C, Hu S et al. Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy[J]. Nature Reviews Physics, 2, 253-271(2020).

    [70] Deng L, Wang Y X, Liu C et al. Plasmonic nanopore-based platforms for single-molecule Raman scattering[J]. Optics Communications, 372, 113-117(2016).

    [71] Cecchini M P, Wiener A, Turek V A et al. Rapid ultrasensitive single particle surface-enhanced Raman spectroscopy using metallic nanopores[J]. Nano Letters, 13, 4602-4609(2013).

    [72] Yang J M, Jin L, Pan Z Q et al. Surface-enhanced Raman scattering probing the translocation of DNA and amino acid through plasmonic nanopores[J]. Analytical Chemistry, 91, 6275-6280(2019).

    [73] Koya A N, Cunha J, Guo T L et al. Novel plasmonic nanocavities for optical trapping-assisted biosensing applications[J]. Advanced Optical Materials, 8, 1901481(2020).

    [74] Whang K, Lee J H, Shin Y et al. Plasmonic bacteria on a nanoporous mirror via hydrodynamic trapping for rapid identification of waterborne pathogens[J]. Light: Science & Applications, 7, 68(2018).

    [75] Burkhartsmeyer J, Wang Y H, Wong K S et al. Optical trapping, sizing, and probing acoustic modes of a small virus[J]. Applied Sciences, 10, 394(2020).

    [76] Bouloumis T D, Kotsifaki D G, Han X et al. Fast and efficient nanoparticle trapping using plasmonic connected nanoring apertures[J]. Nanotechnology, 32, 025507(2021).

    Tools

    Get Citation

    Copy Citation Text

    Siyuan Wang, Hongyao Liu, Xinchao Lu, Chengjun Huang. Plasmonic Nanopores for Single-Molecule Optical Detection Applications[J]. Chinese Journal of Lasers, 2023, 50(1): 0113012

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: micro and nano optics

    Received: May. 27, 2022

    Accepted: Jun. 15, 2022

    Published Online: Jan. 6, 2023

    The Author Email: Liu Hongyao (liuhongyao@ime.ac.cn), Lu Xinchao (luxinchao@ime.ac.cn), Huang Chengjun (huangchengjun@ime.ac.cn)

    DOI:10.3788/CJL220914

    Topics