Acta Optica Sinica, Volume. 37, Issue 8, 0828004(2017)

Improved Method for LiDAR Point Cloud Data Filtering Based on Hierarchical Pseudo-Grid

Zuowei Huang1、*, Feng Liu2, and Guangwei Hu1
Author Affiliations
  • 1 School of Architecture and Urban Planning, Hunan University of Technology, Zhuzhou, Hunan 412000, China
  • 2 School of Geosciences and Information-Physics, Central South University, Changsha, Hunan 410083, China
  • show less
    Figures & Tables(13)
    Schematic diagram of pseudo-grid. (a) Three-dimensional display; (b) two-dimensional display
    Construction process of pseudo-grid
    Flow chart of improved filtering algorithm
    Filtering flow chart based on CUDA
    Filtering result of sample 11. (a) DSM of sample data; (b) result after filtering with slope method; (c) result after filtering with the improved method; (d) real DEM provide by ISPRS; (e) error distribution map
    Comparison of type II error with different algorithms
    Comparison of processing time with different algorithms
    Experimental data. (a) Original point cloud data; (b) DSM grey-scale map of after meshing
    Experiment results. (a) Filtering result of this method; (b) filtering result of progressive TIN filtering algorithm; (c) filtering result of slope filtering algorithm; (d) DEM after filtering
    • Table 1. Attributes of filtering data

      View table

      Table 1. Attributes of filtering data

      DataData 1Data 2Data 3
      SensorALS50-ⅡALS50-ⅡALS60
      Time2012.42012.52012.4
      Altitude /m125012502000
      Number185673267859381623
      Mean point density /m-21.62.53.2
      Coverage /km20.120.170.19
    • Table 2. Parameters of data filtering

      View table

      Table 2. Parameters of data filtering

      NumberMax grid scale /mSlope thresholdStSiSm
      17515201540
      27515251540
      37515202040
      47515151540
    • Table 3. Filtering error statistics of three groups data under different parameters

      View table

      Table 3. Filtering error statistics of three groups data under different parameters

      Experiential dataNumberType I error /%Type II error /%Gross error /%
      Data 1110.565.787.78
      211.235.898.12
      312.355.2310.11
      414.687.4312.35
      Data 219.565.515.88
      210.456.348.12
      313.455.689.34
      415.678.679.58
      Data 3110.346.459.17
      211.577.789.35
      314.565.699.09
      415.674.938.74
    • Table 4. Comparison table of filtering error and efficiency of different algorithms

      View table

      Table 4. Comparison table of filtering error and efficiency of different algorithms

      DataFiltering methodType I error /%Type II error /%Gross error /%Efficiency /s
      Progressive TIN13.587.329.1218.4
      Data 1Slope filtering14.788.569.5611.5
      This method10.565.787.782.3
      Progressive TIN11.854.609.8917.7
      Data 2Slope filtering13.436.7810.6710.4
      This method9.565.515.881.3
      Progressive TIN12.584.4710.0119.7
      Data 3Slope filtering13.457.8912.5611.5
      This method10.346.459.170.9
    Tools

    Get Citation

    Copy Citation Text

    Zuowei Huang, Feng Liu, Guangwei Hu. Improved Method for LiDAR Point Cloud Data Filtering Based on Hierarchical Pseudo-Grid[J]. Acta Optica Sinica, 2017, 37(8): 0828004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Jan. 10, 2017

    Accepted: --

    Published Online: Sep. 7, 2018

    The Author Email: Huang Zuowei (huangzuowei4@126.com)

    DOI:10.3788/AOS201737.0828004

    Topics