Chinese Journal of Ship Research, Volume. 17, Issue 4, 194(2022)

GRU neural network-based method for box girder crack damage detection

Xiedong LUO, Dongliang MA, Songlin ZHANG, and Deyu WANG
Author Affiliations
  • State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    Figures & Tables(15)
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    • Table 1. The material parameters of the box girder

      View table
      View in Article

      Table 1. The material parameters of the box girder

      参数数值
      密度$ \rho $/(kg·m−3)7.85×103
      杨氏模量E/MPa2.058×105
      泊松比ν0.3
      $ \alpha $/s−114.82
      $ \beta $/s3.59×10−7
    • Table 2. The hyperparameters of the GRU model

      View table
      View in Article

      Table 2. The hyperparameters of the GRU model

      超参数数值
      学习率0.01
      训练次数50
      批处理大小32
      输入层维度22
      隐藏层特征维度32
      循环层数2
      舍弃概率0.5
    • Table 3. The prediction accuracy of crack location

      View table
      View in Article

      Table 3. The prediction accuracy of crack location

      方法预测精度/%
      无噪声有噪声
      WPT-MLP94.6376.45
      GRU100.0097.14
    • Table 4. Confusion matrix of crack location prediction using GRU method with noise

      View table
      View in Article

      Table 4. Confusion matrix of crack location prediction using GRU method with noise

      实际标签预测标签总计准确率/%
      012345678910
      03062312910101033591.34
      1424500200001025297.22
      20017400000000174100.00
      31000297000000030796.74
      4510030110000030897.73
      51203023050000032294.72
      6000010238000023999.58
      7100000027602027998.92
      80000000028000280100.00
      9220000002194020097.00
      10200000100020520898.56
      总计3422501803093153072392772821982052 90497.14
    • Table 5. Confusion matrix of crack location prediction using WPT-MLP method with noise

      View table
      View in Article

      Table 5. Confusion matrix of crack location prediction using WPT-MLP method with noise

      实际标签预测标签总计准确率%
      012345678910
      01621634262327615813533548.36
      12919593171502025277.38
      23101582100000017490.80
      32414223311121314230775.90
      434487208372212330867.53
      535321342355142032272.98
      67140181993501123983.26
      721407422228101027981.72
      8611711042550428091.07
      92893134000152020076.00
      10206100301019520893.75
      总计3512572272882873332192612851762202 90476.45
    • Table 6. The prediction accuracy of crack length

      View table
      View in Article

      Table 6. The prediction accuracy of crack length

      方法预测精度/%
      无噪声有噪声
      WPT-MLP74.0466.77
      GRU96.3888.67
    • Table 7. Confusion matrix of crack length prediction using GRU method with noise

      View table
      View in Article

      Table 7. Confusion matrix of crack length prediction using GRU method with noise

      实际标签预测标签总计准确率%
      0123
      0191910028267.73
      1968512094989.67
      20288127191189.13
      3004172176294.62
      总计2879708557922 90488.67
    • Table 8. Confusion matrix of crack length prediction using WPT-MLP method with noise

      View table
      View in Article

      Table 8. Confusion matrix of crack length prediction using WPT-MLP method with noise

      实际标签预测标签总计准确率%
      0123
      072651002822.48
      1117621581894980.30
      2112454823891160.15
      301412662276281.63
      总计191 1658428782 90466.77
    Tools

    Get Citation

    Copy Citation Text

    Xiedong LUO, Dongliang MA, Songlin ZHANG, Deyu WANG. GRU neural network-based method for box girder crack damage detection[J]. Chinese Journal of Ship Research, 2022, 17(4): 194

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Ship Structure and Fittings

    Received: Jun. 12, 2021

    Accepted: --

    Published Online: Mar. 26, 2025

    The Author Email:

    DOI:10.19693/j.issn.1673-3185.02415

    Topics