Opto-Electronic Engineering, Volume. 51, Issue 6, 240055-1(2024)
A traffic sign recognition method based on improved YOLOv5
[1] Wang R X, Wu J P, Xu H. Overview of research and application on autonomous vehicle oriented perception system simulation[J]. J Syst Simul, 34, 2507-2521(2022).
[2] Acharya S, Nanda P K. Adjacent LBP and LTP based background modeling with mixed-mode learning for foreground detection[J]. Pattern Anal Appl, 24, 1047-1074(2021).
[3] Shao F M, Wang X Q, Meng F J et al. Real-time traffic sign detection and recognition method based on simplified Gabor wavelets and CNNs[J]. Sensors, 18, 3192(2018).
[4] Maria Dominic Savio M, Deepa T, Bonasu A et al. Image processing for face recognition using HAAR, HOG, and SVM algorithms[J]. J Phys Conf Ser, 1964, 062023(2021).
[5] Burges C J C. A tutorial on support vector machines for pattern recognition[J]. Data Min Knowl Discovery, 2, 121-167(1998).
[6] Thamilselvan P. Lung cancer prediction and classification using adaboost data mining algorithm[J]. Int J Comput Theory Eng, 14, 149-154(2022).
[9] Ren S Q, He K M, Girshick R et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Trans Pattern Anal Mach Intell, 39, 1137-1149(2017).
[17] Chen X, Peng D L, Gu Y. Real-time object detection for UAV images based on improved YOLOv5s[J]. Opto-Electron Eng, 49, 210372(2022).
[18] Yang J, Sun T, Zhu W C et al. A lightweight traffic sign recognition model based on improved YOLOv5[J]. IEEE Access, 11, 115998-116010(2023).
[19] Chen L, Zhang J L, Peng H et al. Few-shot image classification via multi-scale attention and domain adaptation[J]. Opto-Electron Eng, 50, 220232(2023).
[20] Zhang J M, Xie Z P, Sun J et al. A cascaded R-CNN with multiscale attention and imbalanced samples for traffic sign detection[J]. IEEE Access, 8, 29742-29754(2020).
[21] Zhang H B, Qin L F, Li J et al. Real-time detection method for small traffic signs based on Yolov3[J]. IEEE Access, 8, 64145-64156(2020).
[22] Guo Y, Liang R L, Wang R M. Cross-domain adaptive object detection based on CNN image enhancement in foggy conditions[J]. Comput Eng Appl, 59, 187-195(2023).
[24] Wang Y D, Guo J C, Wang T B. Algorithm for foggy-image pedestrian and vehicle detection[J]. J Xidian Univ, 47, 70-77(2020).
[25] Lang B K, Lü B, Wu J Q et al. A traffic sign detection model based on coordinate attention-bidirectional feature pyramid network[J]. J Shenzhen Univ (Sci Eng), 40, 335-343(2023).
[26] Zhu H Y, Han J N, Xu Y. Printed circuit board blemishes detection based on the improved YOLOv5s[J]. Foreign Electron Meas Technol, 42, 152-159(2023).
[27] Wang Y W, Lu Y, Dou Y H et al. Synchronous GPS spoofing Identification based on K-means clustering[J]. J Electron Inf Technol, 45, 4137-4149(2023).
[28] Zhang Z D, Tan M L, Lan Z C et al. CDNet: a real-time and robust crosswalk detection network on Jetson nano based on YOLOv5[J]. Neural Comput Appl, 34, 10719-10730(2022).
[30] Lin T Y, Goyal P, Girshick R et al. Focal loss for dense object detection[J]. IEEE Trans Pattern Anal Mach Intell, 42, 318-327(2020).
Get Citation
Copy Citation Text
Liguo Qu, Xin Zhang, Zibao Lu, Yuling Liu, Guohao Chen. A traffic sign recognition method based on improved YOLOv5[J]. Opto-Electronic Engineering, 2024, 51(6): 240055-1
Category:
Received: Mar. 7, 2024
Accepted: Jun. 4, 2024
Published Online: Oct. 21, 2024
The Author Email: Liguo Qu (曲立国)