Journal of Synthetic Crystals, Volume. 51, Issue 3, 508(2022)

Influence of Stoichiometric Ratio on the Microwave Dielectric Properties of MgO·nGa2O3 Spinel Ceramics

YANG Ming, XU Pengyu, WANG Bin, ZHENG Kaiping, TU Bingtian, and WANG Hao
Author Affiliations
  • [in Chinese]
  • show less
    References(36)

    [3] [3] WU S P, XUE J J, WANG R, et al. Synthesis, characterization and microwave dielectric properties of spinel MgGa2O4 ceramic materials[J]. Journal of Alloys and Compounds, 2014, 585: 542-548.

    [4] [4] CAI J Z, PANG R, YU Z, et al. Preparation and luminescence properties of near infrared luminescent material Mg2SnO4∶Cr3+[J]. Chinese Journal of Luminescence, 2019, 40(12): 1505-1513.

    [6] [6] LUO H, FANG W S, FANG L, et al. Microwave dielectric properties of novel glass-free low temperature firing ACa2Mg2V3O12 (A=Li, K) ceramics[J]. Ceramics International, 2016, 42(8): 10506-10510.

    [7] [7] XIANG H C, FANG L, JIANG X W, et al. A novel temperature stable microwave dielectric ceramic with garnet structure: Sr2 NaMg2V3O12[J]. Journal of the American Ceramic Society, 2016, 99(2): 399-401.

    [9] [9] SURENDRAN K P, BIJUMON P V, MOHANAN P, et al. (1-x)MgAl2O4-xTiO2 dielectrics for microwave and millimeter wave applications[J]. Applied Physics A, 2005, 81(4): 823-826.

    [10] [10] BELOUS A, OVCHAR O, DURILIN D, et al. High-Q microwave dielectric materials based on the spinel Mg2TiO4[J]. Journal of the American Ceramic Society, 2006, 89(11): 3441-3445.

    [11] [11] AMIN B, KHENATA R, BOUHEMADOU A, et al. Opto-electronic response of spinels MgAl2O4 and MgGa2O4 through modified Becke-Johnson exchange potential[J]. Physica B: Condensed Matter, 2012, 407(13): 2588-2592.

    [12] [12] SURENDRAN K P, SANTHA N, MOHANAN P, et al. Temperature stable low loss ceramic dielectrics in (1-x)ZnAl2O4-xTiO2 system for microwave substrate applications[J]. The European Physical Journal B, 2004, 41(3): 301-306.

    [13] [13] XUE J J, WU S P, LI J H. Synthesis, microstructure, and microwave dielectric properties of spinel ZnGa2O4 ceramics[J]. Journal of the American Ceramic Society, 2013, 96(8): 2481-2485.

    [14] [14] LU X C, DU Z H, QUAN B, et al. Structural dependence of the microwave dielectric properties of Cr3+-substituted ZnGa2O4 spinel ceramics: crystal distortion and vibration mode studies[J]. Journal of Materials Chemistry C, 2019, 7(27): 8261-8268.

    [15] [15] ZHENG C W, WU S Y, CHEN X M, et al. Modification of MgAl2O4 microwave dielectric ceramics by Zn substitution[J]. Journal of the American Ceramic Society, 2007, 90(5): 1483-1486.

    [16] [16] XU P Y, WANG H, REN L, et al. Theoretical study on composition-dependent properties of ZnO·nAl2O3 spinels. Part I: optical and dielectric[J]. Journal of the American Ceramic Society, 2021, 104(10): 5099-5109.

    [17] [17] TAKAHASHI S, OGAWA H, KAN A. Electronic states and cation distributions of MgAl2O4 and Mg0.4Al2.4O4 microwave dielectric ceramics[J]. Journal of the European Ceramic Society, 2018, 38(2): 593-598.

    [18] [18] TAKAHASHI S, KAN A, OGAWA H. Microwave dielectric properties and cation distributions of Zn1-3xAl2+2xO4 ceramics with defect structures[J]. Journal of the European Ceramic Society, 2017, 37(9): 3059-3064.

    [19] [19] TAKAHASHI S, KAN A, OGAWA H. Microwave dielectric properties and crystal structures of Mg0.7Al2.2O4 and Mg0.4Al2.4O4 ceramics with defect structures[J]. Journal of the American Ceramic Society, 2017, 100(8): 3497-3504.

    [20] [20] XU P Y, WANG H, ZHENG K P, et al. Novel transparent ZnO·3Al2O3 ceramics prepared by reactive hot isostatic pressing[J]. Journal of the European Ceramic Society, 2022, 42(2): 724-728.

    [21] [21] BROWN J J. Manganese-activated luminescence in the MgO-Al2O3-Ga2O3 system[J]. Journal of the Electrochemical Society, 1967, 114(3): 245.

    [22] [22] SICKAFUS K E, WILLS J M, GRIMES N W. Structure of spinel[J]. Journal of the American Ceramic Society, 2004, 82(12): 3279-3292.

    [23] [23] SULLIVAN R M. A historical view of ALON[C]//Window and Dome Technologies and Materials Ⅸ, SPIE Proceedings. Orlando, Florida, USA. SPIE, 2005.

    [25] [25] TING C J, LU H Y. Defect reactions and the controlling mechanism in the sintering of magnesium aluminate spinel[J]. Journal of the American Ceramic Society, 1999, 82(4): 841-848.

    [26] [26] DONG M Z, YUE Z X, ZHUANG H, et al. Microstructure and microwave dielectric properties of TiO2-doped Zn2SiO4 ceramics synthesized through the sol-gel process[J]. Journal of the American Ceramic Society, 2008, 91(12): 3981-3985.

    [27] [27] BI J X, YANG C H, WU H T. Correlation of crystal structure and microwave dielectric characteristics of temperature stable Zn1-xMnxZrNb2O8 (0.02≤x≤0.1) ceramics[J]. Ceramics International, 2017, 43(1): 92-98.

    [28] [28] SHANNON R D, ROSSMAN G R. Dielectric constant of MgAl2O4 spinel and the oxide additivity rule[J]. Journal of Physics and Chemistry of Solids, 1991, 52(9): 1055-1059.

    [29] [29] SHANNON R D. Dielectric polarizabilities of ions in oxides and fluorides[J]. Journal of Applied Physics, 1993, 73(1): 348-366.

    [30] [30] SURENDRAN K P, SEBASTIAN M T, MANJUSHA M V, et al. A low loss, dielectric substrate in ZnAl2O4-TiO2 system for microelectronic applications[J]. Journal of Applied Physics, 2005, 98(4): 044101.

    [31] [31] WU S P, XUE J J, FAN Y X. Spinel Mg(Al, Ga)2O4 solid solution as high-performance microwave dielectric ceramics[J]. Journal of the American Ceramic Society, 2014, 97(11): 3555-3560.

    [32] [32] BROWN I D. Recent developments in the methods and applications of the bond valence model[J]. Chemical Reviews, 2009, 109(12): 6858-6919.

    [33] [33] LIU X, WANG H, LAVINA B, et al. Chemical composition, crystal structure, and their relationships with the intrinsic properties of spinel-type crystals based on bond valences[J]. Inorganic Chemistry, 2014, 53(12): 5986-5992.

    [34] [34] LIU X, WANG H, WANG W M, et al. Simple method for the hardness estimation of inorganic crystals by the bond valence model[J]. Inorganic Chemistry, 2016, 55(21): 11089-11095.

    [35] [35] BRESE N E, O’KEEFFE M. Bond-valence parameters for solids[J]. Acta Crystallographica Section B Structural Science, 1991, 47(2): 192-197.

    [36] [36] KAN A, MORIYAMA T, TAKAHASHI S, et al. Cation distributions and microwave dielectric properties of spinel-structured MgGa2O4ceramics[J]. Japanese Journal of Applied Physics, 2013, 52(9S1): 09KH01.

    [37] [37] HU M Z, GU H S, CHU X C, et al. Crystal structure and dielectric properties of (1-x)Ca0.61Nd0.26TiO3+xNd(Mg1/2Ti1/2)O3 complex perovskite at microwave frequencies[J]. Journal of Applied Physics, 2008, 104(12): 124104.

    [38] [38] HU M Z, FU Y, LUO C Y, et al. Microstructure and microwave dielectric properties of xCa(Al0.5Nb0.5)O3+(1-x)SrTiO3 solid solutions[J]. Journal of the American Ceramic Society, 2010, 93(10): 3354-3359.

    [39] [39] ZHANG S Y, LI H L, ZHOU S H, et al. Estimation thermal expansion coefficient from lattice energy for inorganic crystals[J]. Japanese Journal of Applied Physics, 2006, 45(11): 8801-8804.

    [40] [40] WANG G, ZHANG D N, HUANG X, et al. Crystal structure and enhanced microwave dielectric properties of Ta5+ substituted Li3Mg2NbO6 ceramics[J]. Journal of the American Ceramic Society, 2020, 103(1): 214-223.

    [41] [41] WANG G, ZHANG D N, LI J, et al. Structural dependence of microwave dielectric performance of wolframite structured Mg1-xCaxZrNb2O8 ceramics: crystal structure, microstructure evolution, Raman analysis and chemical bond theory[J]. Journal of the European Ceramic Society, 2021, 41(6): 3445-3451.

    Tools

    Get Citation

    Copy Citation Text

    YANG Ming, XU Pengyu, WANG Bin, ZHENG Kaiping, TU Bingtian, WANG Hao. Influence of Stoichiometric Ratio on the Microwave Dielectric Properties of MgO·nGa2O3 Spinel Ceramics[J]. Journal of Synthetic Crystals, 2022, 51(3): 508

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 7, 2022

    Accepted: --

    Published Online: Apr. 21, 2022

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics