Journal of Synthetic Crystals, Volume. 51, Issue 3, 508(2022)
Influence of Stoichiometric Ratio on the Microwave Dielectric Properties of MgO·nGa2O3 Spinel Ceramics
[3] [3] WU S P, XUE J J, WANG R, et al. Synthesis, characterization and microwave dielectric properties of spinel MgGa2O4 ceramic materials[J]. Journal of Alloys and Compounds, 2014, 585: 542-548.
[4] [4] CAI J Z, PANG R, YU Z, et al. Preparation and luminescence properties of near infrared luminescent material Mg2SnO4∶Cr3+[J]. Chinese Journal of Luminescence, 2019, 40(12): 1505-1513.
[6] [6] LUO H, FANG W S, FANG L, et al. Microwave dielectric properties of novel glass-free low temperature firing ACa2Mg2V3O12 (A=Li, K) ceramics[J]. Ceramics International, 2016, 42(8): 10506-10510.
[7] [7] XIANG H C, FANG L, JIANG X W, et al. A novel temperature stable microwave dielectric ceramic with garnet structure: Sr2 NaMg2V3O12[J]. Journal of the American Ceramic Society, 2016, 99(2): 399-401.
[9] [9] SURENDRAN K P, BIJUMON P V, MOHANAN P, et al. (1-x)MgAl2O4-xTiO2 dielectrics for microwave and millimeter wave applications[J]. Applied Physics A, 2005, 81(4): 823-826.
[10] [10] BELOUS A, OVCHAR O, DURILIN D, et al. High-Q microwave dielectric materials based on the spinel Mg2TiO4[J]. Journal of the American Ceramic Society, 2006, 89(11): 3441-3445.
[11] [11] AMIN B, KHENATA R, BOUHEMADOU A, et al. Opto-electronic response of spinels MgAl2O4 and MgGa2O4 through modified Becke-Johnson exchange potential[J]. Physica B: Condensed Matter, 2012, 407(13): 2588-2592.
[12] [12] SURENDRAN K P, SANTHA N, MOHANAN P, et al. Temperature stable low loss ceramic dielectrics in (1-x)ZnAl2O4-xTiO2 system for microwave substrate applications[J]. The European Physical Journal B, 2004, 41(3): 301-306.
[13] [13] XUE J J, WU S P, LI J H. Synthesis, microstructure, and microwave dielectric properties of spinel ZnGa2O4 ceramics[J]. Journal of the American Ceramic Society, 2013, 96(8): 2481-2485.
[14] [14] LU X C, DU Z H, QUAN B, et al. Structural dependence of the microwave dielectric properties of Cr3+-substituted ZnGa2O4 spinel ceramics: crystal distortion and vibration mode studies[J]. Journal of Materials Chemistry C, 2019, 7(27): 8261-8268.
[15] [15] ZHENG C W, WU S Y, CHEN X M, et al. Modification of MgAl2O4 microwave dielectric ceramics by Zn substitution[J]. Journal of the American Ceramic Society, 2007, 90(5): 1483-1486.
[16] [16] XU P Y, WANG H, REN L, et al. Theoretical study on composition-dependent properties of ZnO·nAl2O3 spinels. Part I: optical and dielectric[J]. Journal of the American Ceramic Society, 2021, 104(10): 5099-5109.
[17] [17] TAKAHASHI S, OGAWA H, KAN A. Electronic states and cation distributions of MgAl2O4 and Mg0.4Al2.4O4 microwave dielectric ceramics[J]. Journal of the European Ceramic Society, 2018, 38(2): 593-598.
[18] [18] TAKAHASHI S, KAN A, OGAWA H. Microwave dielectric properties and cation distributions of Zn1-3xAl2+2xO4 ceramics with defect structures[J]. Journal of the European Ceramic Society, 2017, 37(9): 3059-3064.
[19] [19] TAKAHASHI S, KAN A, OGAWA H. Microwave dielectric properties and crystal structures of Mg0.7Al2.2O4 and Mg0.4Al2.4O4 ceramics with defect structures[J]. Journal of the American Ceramic Society, 2017, 100(8): 3497-3504.
[20] [20] XU P Y, WANG H, ZHENG K P, et al. Novel transparent ZnO·3Al2O3 ceramics prepared by reactive hot isostatic pressing[J]. Journal of the European Ceramic Society, 2022, 42(2): 724-728.
[21] [21] BROWN J J. Manganese-activated luminescence in the MgO-Al2O3-Ga2O3 system[J]. Journal of the Electrochemical Society, 1967, 114(3): 245.
[22] [22] SICKAFUS K E, WILLS J M, GRIMES N W. Structure of spinel[J]. Journal of the American Ceramic Society, 2004, 82(12): 3279-3292.
[23] [23] SULLIVAN R M. A historical view of ALON[C]//Window and Dome Technologies and Materials Ⅸ, SPIE Proceedings. Orlando, Florida, USA. SPIE, 2005.
[25] [25] TING C J, LU H Y. Defect reactions and the controlling mechanism in the sintering of magnesium aluminate spinel[J]. Journal of the American Ceramic Society, 1999, 82(4): 841-848.
[26] [26] DONG M Z, YUE Z X, ZHUANG H, et al. Microstructure and microwave dielectric properties of TiO2-doped Zn2SiO4 ceramics synthesized through the sol-gel process[J]. Journal of the American Ceramic Society, 2008, 91(12): 3981-3985.
[27] [27] BI J X, YANG C H, WU H T. Correlation of crystal structure and microwave dielectric characteristics of temperature stable Zn1-xMnxZrNb2O8 (0.02≤x≤0.1) ceramics[J]. Ceramics International, 2017, 43(1): 92-98.
[28] [28] SHANNON R D, ROSSMAN G R. Dielectric constant of MgAl2O4 spinel and the oxide additivity rule[J]. Journal of Physics and Chemistry of Solids, 1991, 52(9): 1055-1059.
[29] [29] SHANNON R D. Dielectric polarizabilities of ions in oxides and fluorides[J]. Journal of Applied Physics, 1993, 73(1): 348-366.
[30] [30] SURENDRAN K P, SEBASTIAN M T, MANJUSHA M V, et al. A low loss, dielectric substrate in ZnAl2O4-TiO2 system for microelectronic applications[J]. Journal of Applied Physics, 2005, 98(4): 044101.
[31] [31] WU S P, XUE J J, FAN Y X. Spinel Mg(Al, Ga)2O4 solid solution as high-performance microwave dielectric ceramics[J]. Journal of the American Ceramic Society, 2014, 97(11): 3555-3560.
[32] [32] BROWN I D. Recent developments in the methods and applications of the bond valence model[J]. Chemical Reviews, 2009, 109(12): 6858-6919.
[33] [33] LIU X, WANG H, LAVINA B, et al. Chemical composition, crystal structure, and their relationships with the intrinsic properties of spinel-type crystals based on bond valences[J]. Inorganic Chemistry, 2014, 53(12): 5986-5992.
[34] [34] LIU X, WANG H, WANG W M, et al. Simple method for the hardness estimation of inorganic crystals by the bond valence model[J]. Inorganic Chemistry, 2016, 55(21): 11089-11095.
[35] [35] BRESE N E, O’KEEFFE M. Bond-valence parameters for solids[J]. Acta Crystallographica Section B Structural Science, 1991, 47(2): 192-197.
[36] [36] KAN A, MORIYAMA T, TAKAHASHI S, et al. Cation distributions and microwave dielectric properties of spinel-structured MgGa2O4ceramics[J]. Japanese Journal of Applied Physics, 2013, 52(9S1): 09KH01.
[37] [37] HU M Z, GU H S, CHU X C, et al. Crystal structure and dielectric properties of (1-x)Ca0.61Nd0.26TiO3+xNd(Mg1/2Ti1/2)O3 complex perovskite at microwave frequencies[J]. Journal of Applied Physics, 2008, 104(12): 124104.
[38] [38] HU M Z, FU Y, LUO C Y, et al. Microstructure and microwave dielectric properties of xCa(Al0.5Nb0.5)O3+(1-x)SrTiO3 solid solutions[J]. Journal of the American Ceramic Society, 2010, 93(10): 3354-3359.
[39] [39] ZHANG S Y, LI H L, ZHOU S H, et al. Estimation thermal expansion coefficient from lattice energy for inorganic crystals[J]. Japanese Journal of Applied Physics, 2006, 45(11): 8801-8804.
[40] [40] WANG G, ZHANG D N, HUANG X, et al. Crystal structure and enhanced microwave dielectric properties of Ta5+ substituted Li3Mg2NbO6 ceramics[J]. Journal of the American Ceramic Society, 2020, 103(1): 214-223.
[41] [41] WANG G, ZHANG D N, LI J, et al. Structural dependence of microwave dielectric performance of wolframite structured Mg1-xCaxZrNb2O8 ceramics: crystal structure, microstructure evolution, Raman analysis and chemical bond theory[J]. Journal of the European Ceramic Society, 2021, 41(6): 3445-3451.
Get Citation
Copy Citation Text
YANG Ming, XU Pengyu, WANG Bin, ZHENG Kaiping, TU Bingtian, WANG Hao. Influence of Stoichiometric Ratio on the Microwave Dielectric Properties of MgO·nGa2O3 Spinel Ceramics[J]. Journal of Synthetic Crystals, 2022, 51(3): 508
Category:
Received: Jan. 7, 2022
Accepted: --
Published Online: Apr. 21, 2022
The Author Email:
CSTR:32186.14.