Journal of Inorganic Materials, Volume. 36, Issue 3, 245(2021)

Micro-nano Ceramic Fibers for High Temperature Thermal Insulation

Xiaoshan ZHANG1, Bing WANG1, Nan WU2, Cheng HAN1, Chunzhi WU1, and Yingde WANG1、*
Author Affiliations
  • 11. Science and Technology on Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
  • 22. Department of Material Science and Engineering, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
  • show less
    References(70)

    [1] CHEN Y F, HONG C Q, HU C L et al. Ceramic-based thermal protection materials for aerospace vehicle[J]. Advanced Ceramics, 38, 311-390(2017).

    [2] BEHRENS B, MULLER M. Technologies for thermal protection systems applied on reusable launcher[J]. Acta Astronautica, 55, 529-536(2004).

    [3] WANG C A, LANG Y, HU L F et al. Research progress on lightweight and high strength heat-insulating porous ceramics[J]. Journal of Ceramics, 38, 287-296(2017).

    [4] TERESA L, MARIA T P A, LUISA D. Silica aerogel composites with embedded fibres: a review on their preparation, properties and applications[J]. Journal of Materials Chemistry A, 7, 22768-22802(2019).

    [5] LUO Y, JIANG Y G, FENG J Z et al. Progress on the preparation of SiO2 aerogel composites by ambient pressure drying technique[J]. Materials Review, 32, 780-787(2018).

    [9] SABETZADEH N, BAHRAMBEYGI H, RABBI A et al. Thermal conductivity of polyacrylonitrile nanofibre web in various nanofibre diameters and surface densities[J]. Micro & Nano Letters, 7, 662-666(2012).

    [10] YAN J, HAN Y, XIA S et al. Polymer template synthesis of flexible BaTiO3 Crystal nanofibers[J]. Advanced Functional Materials, 29, 1907919(2019).

    [12] ARAMBAKAM R, TAFRESHI H V, POURDEYHIMI B. A simple simulation method for designing fibrous insulation materials[J]. Materials & Design, 44, 99-106(2013).

    [13] ARAMBAKAM R, TAFRESHI H V, POURDEYHIMI B. Dual-scale 3-D approach for modeling radiative heat transfer in fibrous insulations[J]. International Journal of Heat and Mass Transfer, 64, 1109-1117(2013).

    [14] ZHANG X S, WANG B, WU N et al. Flexible and thermal-stable SiZrOC nanofiber membranes with low thermal conductivity at high-temperature[J]. Journal of the European Ceramic Society, 40, 1877-1885(2020).

    [15] DARYABEUGI K, CUNNINGTON G R, KNUTSON J R. Heat transfer modeling for rigid high-temperature fibrous insulation[J]. Journal of Thermophysics and Heat Transfer, 27, 414-421(2013).

    [16] HU F, WU S, SUN Y. Hollow structured materials for thermal insulation[J]. Advanced Materials, 31, 1801001(2019).

    [17] MACHADO H A. Modeling heat transfer with micro-scale natural convection in fibrous insulation[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 36, 847-857(2014).

    [18] DARYABEUGI K, CUNNINGTON G R, KNUTSON J R. Combined heat transfer in high-porosity high-temperature fibrous insulation: theory and experimental validation[J]. Journal of Thermophysics and Heat Transfer, 25, 536-546(2011).

    [19] SHIN S, WANG Q, LUO J et al. Advanced materials for high- temperature thermal transport[J]. Advanced Functional Materials, 30, 1904815(2020).

    [20] GIBSON P W, LEE C, KO F et al. Application of nanofiber technology to nonwoven thermal insulation[J]. Journal of Engineered Fibers and Fabrics, 2, 32-40(2007).

    [21] WANG B, WANG Y D. Effect of fiber diameter on thermal conductivity of the electrospun carbon nanofiber mats[J]. Advanced Materials Research, 332, 672-677(2011).

    [22] YAN J, ZHANG Y, ZHAO Y et al. Transformation of oxide ceramic textiles from insulation to conduction at room temperature[J], 6(2020).

    [23] ZHU W, GUO A, XUE Y et al. Mechanical evaluations of mullite fibrous ceramics processed by filtration and in situ pyrolysis of organic precursor[J]. Journal of the European Ceramic Society, 39, 1329-1335(2019).

    [24] HE F, LI W, ZKOU L et al. Preparation and characterization of the three-dimensional network mullite porous fibrous materials by pressure and freeze-casting method[J]. Ceramics International, 45, 3954-3960(2019).

    [26] WU N, WANG B, WANG Y D. Enhanced mechanical properties of amorphous SiOC nanofibrous membrane through in situ embedding nanoparticles[J]. Journal of the American Ceramic Society, 101, 4763-4772(2018).

    [27] SI Y, MAO X, ZHENG H et al. Silica nanofibrous membranes with ultra-softness and enhanced tensile strength for thermal insulation[J]. RSC Advances, 5, 6027-6032(2015).

    [28] MAO X, BAI Y, YU J et al. Flexible and highly temperature resistant polynanocrystalline zirconia nanofibrous membranes designed for air filtration[J]. Journal of the American Ceramic Society, 99, 2760-2768(2016).

    [29] ZHANG P, CHEN D, JIAO X. Fabrication of flexible α-alumina fibers composed of nanosheets[J]. European Journal of Inorganic Chemistry, 2012, 4167-4173(2012).

    [30] LI W, ZHAO X M, WANG Y F et al. Fabrication and mechanical properties of flexible gamma-Al2O3 nanofibrous membranes[J]. Chemical Journal of Chinese Universities, 38, 915-921(2017).

    [31] YUAN K, WANG X, LIU H et al. Formation of barium zirconate fibers for high-temperature thermal insulation applications[J]. Journal of the American Ceramic Society, 99, 2913-2919(2016).

    [32] SHI S, YUAN K, XU C et al. Electrospun fabrication, excellent high-temperature thermal insulation and alkali resistance performance of calcium zirconate fiber[J]. Ceramics International, 44, 14013-14019(2018).

    [33] XIE Y, WANG L, LIU B et al. Flexible, controllable, and high-strength near-infrared reflective Y2O3 nanofiber membrane by electrospinning a polyacetylacetone-yttrium precursor[J]. Materials & Design, 160, 918-925(2018).

    [34] SI Y, YU J, TANG X et al. Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality[J]. Nature Communications, 5, 1-9(2014).

    [35] DOU L, CHENG X, ZHANG X et al. Temperature-invariant superelastic, fatigue resistant, and binary-network structured silica nanofibrous aerogels for thermal superinsulation[J]. Journal of Materials Chemistry A, 32, 1904331(2020).

    [38] XIAN L, ZHANG Y, WU Y et al. Microstructural evolution of mullite nanofibrous aerogels with different ice crystal growth inhibitors[J]. Ceramics International, 46, 1869-1875(2020).

    [39] YU Z L, QIN B, MA Z Y et al. Superelastic hard carbon nanofiber aerogels[J]. Advanced Materials, 31, 1900651(2019).

    [40] LI C, DING Y W, HU B C et al. Temperature-invariant superelastic and fatigue resistant carbon nanofiber aerogels[J]. Advanced Materials, 32, 1904331(2020).

    [41] ZHANG J, LI B, LI L et al. Ultralight, compressible and multifunctional carbon aerogels based on natural tubular cellulose[J]. Journal of Materials Chemistry A, 4, 2069-2074(2016).

    [42] RUCKDESCHEL P, PHILIPP A, RETSCH M. Understanding thermal insulation in porous, particulate materials[J]. Advanced Functional Materials, 27, 1702256(2017).

    [43] BRENDEL H, SEIFERT G, RARTHER F. Heat transfer properties of hollow-fiber insulation materials at high temperatures[J]. Journal of Thermophysics and Heat Transfer, 31, 463-472(2017).

    [44] WANG T C, ZHANG Z, DAI C et al. Amorphous silicon and silicates-stabilized ZrO2 hollow fiber with low thermal conductivity and high phase stability derived from a cogon template[J]. Ceramics International, 45, 7120-7126(2019).

    [47] WANG T C, YU Q, KONG J. Preparation and heat-insulating properties of biomorphic ZrO2 hollow fibers derived from a cotton template[J]. International Journal of Applied Ceramic Technology, 15, 472-478(2018).

    [48] XU C, WANG H, SONG J et al. Ultralight and resilient Al2O3 nanotube aerogels with low thermal conductivity[J]. Journal of the American Ceramic Society, 101, 1677-1683(2018).

    [53] GBEWONYO S, CARPENTER A W, GAUSE C B et al. Low thermal conductivity carbon fibrous composite nanomaterial enabled by multi-scale porous structure[J]. Materials & Design, 134, 218-225(2017).

    [54] WANG Y D, HUANG H, ZHAO Y et al. Self-assembly of ultralight and compressible inorganic sponges with hierarchical porosity by electrospinning[J]. Ceramics International, 46, 768-774(2020).

    [56] ZHOU J, HSIEH Y L. Nanocellulose aerogel-based porous coaxial fibers for thermal insulation[J]. Nano Energy, 68, 104305(2020).

    [59] YANG L L, GE D, WEI H et al. Morphology and characterization of ITO-Ag-ITO films on fibers by layer-by-layer method[J]. Applied Surface Science, 255, 8197-8201(2009).

    [60] WANG X D, SUN D, DUAN Y Y et al. Radiative characteristics of opacifier-loaded silica aerogel composites[J]. Journal of Non-crystalline Solids, 375, 31-39(2013).

    [63] TONG T W, SWATHI P S, CUNNINGTON JR G R. Reduction of radiative heat transfer in thermal insulations by use of dielectric coated fibers[J]. International Communications in Heat and Mass Transfer, 16, 851-860(1989).

    [64] HASS D D, PRASDA B D, GLASS D E et al. Reflective Coating on Fibrous Insulation for Reduced Heat Transfer[J]. NASA Contractor Report 201733(1997).

    [69] XU L, JIANG Y, FENG J et al. Infrared-opacified Al2O3-SiO2 aerogel composites reinforced by SiC-coated mullite fibers for thermal insulations[J]. Ceramics International, 41, 437-442(2015).

    Tools

    Get Citation

    Copy Citation Text

    Xiaoshan ZHANG, Bing WANG, Nan WU, Cheng HAN, Chunzhi WU, Yingde WANG. Micro-nano Ceramic Fibers for High Temperature Thermal Insulation[J]. Journal of Inorganic Materials, 2021, 36(3): 245

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: REVIEW

    Received: Apr. 26, 2020

    Accepted: --

    Published Online: Dec. 8, 2021

    The Author Email: Yingde WANG (wangyingde@nudt.edu.cn)

    DOI:10.15541/jim20200220

    Topics