Chinese Journal of Liquid Crystals and Displays, Volume. 38, Issue 2, 160(2023)

Research progress of green luminescent materials for lighting and displays

Xing-can LI1, Li-li LU2, Chen-yang SHAO1, Gui-lu WANG3, Xi-gui ZHENG3, Yue-long MA1,4、*, and Ye TIAN1、**
Author Affiliations
  • 1School of Mechanical and Electrical Engineering,Henan University of Technology,Zhengzhou 450001,China
  • 2School of Food Science and Technology,Henan University of Technology,Zhengzhou 450001,China
  • 3School of Mechanical Engineering,Zhengzhou University of Science and Technology,Zhengzhou 450064,China
  • 4Songshan Laboratory,Zhengzhou 450046,China
  • show less
    Figures & Tables(23)
    (a)Comparison of photoluminescence properties of β-Sialon∶Eu2+ powders excited at 365 nm before and after annealing in reducing atmosphere;(b)CIE chromaticity coordinates of β-Sialon∶Eu2+ and K2SiF6∶Mn4+ encapsulated white LEDs;(c)Relationship between emission intensity and temperature of phosphor Sr3-3xSi13Al3O2N21∶3xEu2+;(d)CIE chromaticity coordinates of the white LED[17-19].
    Relationship between laser power density and luminous efficiency measured on samples of different concentrations(a)and thicknesses(b)[21]
    (a)Total spectral flux from the film measured under different laser power/power densities;(b)Infrared thermal image of the film under 26.4 W/mm2 laser irradiation[23].
    (a)PLE and PL spectra of RN∶Eu2+,RLSO∶Eu2+(red dotted line),and β-Sialon∶Eu2+(blue short dotted line);(b)PL spectra of the pristine RbNa(Li3SiO4)2∶Eu2+ and the sample exposed to ambient atmosphere for different days,and the inset shows the dependence of normalized integrated PL intensities on the time;(c)Temperature dependent emission spectra of RbNa(Li3SiO4)2∶Eu2+ at 455 nm excitation;(d)CIE chromaticity coordinates of white LED device[25].
    (a)PL spectra of Rb1+xNa2.97-x(Li3SiO4)4∶Eu2+(0≤x≤2.5)phosphors;(b)Normalized integrated emission intensities and peak intensities of Rb3Na(Li3SiO4)4∶Eu2+as a function of temperature[27].
    (a)Spatial structure of SrMgAl10O17∶Eu2+,Mn2+ phosphors. In the Sr-O conductive layer,Eu2+ ion replaces the Sr2+ ion. In MgAl10O16 spinel,Mn2+ ions replace Mg2+ ions;(b)PL spectrum of the phosphor SrMgAl10O17∶0.4 Eu2+,0.6 Mn2+ excited by 430 nm[32].
    (a)Eu2+ concentration-dependent PL spectra of Sr2(Mg,Mn)Al22O36∶Eu2+samples(λex = 360 nm);(b)Temperature-dependent PL spectra of optimal Sr2(Mg,Mn)Al22O36∶Eu2+sample(λex = 360 nm)[33].
    (a)CIE Chromaticity coordinates of LED encapsulated with YAGG∶Ce ceramics(Inset:picture of Y3Al5-xGaxO12∶Ce(x=0~4)ceramics excited by blue LED chip);(b)Temperature-dependent luminescence intensity of Y3Al5–xGaxO12∶Ce(x=0~4)ceramics[34].
    (a)Luminous efficiency and luminous flux of films with thickness of 0.2 mm under excitation of different input power densities;(b)Temperature dependence of the integrated luminescence intensities for YAGG phosphor and composite films in the temperature range of 25~300 ℃[36].
    (a)At 430 nm excitation,the emission intensity of NaBaB9O15∶Eu2+ varied with temperature,and the emission peak and emission peak intensity of NaBaB9O15∶Eu2+ varied with temperature;(b)Blue LED and K2SiF6∶Mn4+ encapsulated with(Na0.97Eu0.03)BaB9O15,Ba1.14Sr0.86SiO4∶Eu2+ and β-SiAlON∶Eu2+,respectively,to form the CIE Chromaticity coordinates of white LED devices[48].
    (a)Room temperature photoluminescence(PL)and photoluminescence excitation(PLE)spectra of x=2.33;(b)Room temperature photoluminescence(PL)and photoluminescence excitation(PLE)spectra of x=2[50].
    (a)PLE and PL spectra of ZBO∶Mn2+ sample;(b)Thermal stability(integrated emission intensity)comparison between ZBO∶Mn2+ and some representative phosphors[51].
    (a)Emission spectra of ZBO∶Mn2+ and commercial green phosphor(BaSr)2SiO4∶Eu2+ and β- SiAlON∶Eu2+;(b)Thermal quenching data of ZBO∶0.05 Mn2+ and(BaSr)2SiO4∶Eu2+ phosphor[53].
    (a)Emission spectra of BZBP∶0.07 Tb3+ phosphors using traditional solid state reaction method and microwave assisted solid state reaction method;(b)Normalized PL intensity depending on temperature ranging from 298 K to 473 K[62].
    (a)Relationship between x and FWHM at 550 nm for KAlSiO4∶1.5% Tb3+,x% Li+ sample;(b)Variation of spectral light intensity of KAlSiO4∶1.5% Tb3+,1.5% Li+ with temperature[64].
    Excitation and emission spectra of the(a)CGHAO∶0.04 Ce3+(λem=499 nm;λex=408 nm)and(b)CGHAO∶0.4 Tb3+(λem=543 nm;λex=266 nm)phosphors;(c)Comparison of excitation spectrum of CGHAO∶0.4 Tb3+(λem=543 nm)and emission spectrum of CGHAO∶0.04 Ce3+(λex=408 nm)phosphors,demonstrating the existence of spectral overlap;(d)Excitation and emission spectra of CGHAO∶0.04 Ce3+,0.4 Tb3+ phosphors(λem=543 nm;λex=408 nm)[66].
    (a)PL spectra of γ-AlON∶0.07 Mn2+,0.10 Mg2+,0.07 M(M=Li+,Na+,K+,Si4+). The inset shows the correlation of integrated emission intensity and FWHM with different charge compensators;(b)Dependence of the normalized emission intensity of γ-AlON∶0.07 Mn2+,0.10 Mg2+,0.07 M(M=Li+,Na+,K+,Si4+)as a function of temperature[69].
    • Table 1. Comparison of properties of UCr4C4∶Eu2+ green luminescent materials

      View table
      View in Article

      Table 1. Comparison of properties of UCr4C4∶Eu2+ green luminescent materials

      化学组成发射波长峰值/nm内量子效率/%外量子效率/%半峰宽/nm参考文献
      RbLi(Li3SiO42∶Eu2+53080294224
      RbNa(Li3SiO42∶Eu2+52396.244.24125
      Rb3Na(Li3SiO44∶Eu2+52785.340.44226
      Rb3Na(Li3SiO44∶Eu2+52690.240.24327
      CsKNa(Li3SiO44∶Eu2+5255528
    • Table 2. Comparison of properties of green light fluorophores of magnesium-aluminum spinel type

      View table
      View in Article

      Table 2. Comparison of properties of green light fluorophores of magnesium-aluminum spinel type

      化学组成发射波长峰值/nm半峰宽/nm外量子效率/%NTSC参考文献
      MgAl2O4∶Mn2+5253545K2SiF6∶Mn4+116%29
      Sr2MgAl22O36∶Mn2+5182642K2SiF6∶Mn4+127%30
      MgAl2O4∶Er3+,Yb3+,Bi3+52131
      SrMgAl10O17∶Eu2+,Mn2+5182653K2SiF6∶Mn4+114%32
      Sr2(Mg,Mn)Al22O36∶Eu2+518284233
    • Table 3. Comparison of properties of garnet type green fluorophores

      View table
      View in Article

      Table 3. Comparison of properties of garnet type green fluorophores

      荧光体类型发射波长峰值/nm内量子效率/%外量子效率/%发光热稳定性/%参考文献
      Y3Al4GaO12∶Ce陶瓷52089.944.690.7(150 ℃)34
      Y3Al3.5Ga1.5O12∶Ce3+玻璃52092.763.291.6(230 ℃)35
      Y3Al3.08Ga1.92O12∶Ce3+薄膜52095.290.2(200 ℃)36
      Lu3Al5O12∶Ce3+单晶52063103(200 ℃)37
      Lu3Al5O12∶Ce3+粉末55038
      Lu3Al5O12∶Ce3+玻璃52093.861.247(270 ℃)39
      Lu3Al5O12∶Ce3+(Ba2+-Si4+)陶瓷52075.155.191(150 ℃)40
      Y3Ga5O12∶Ce粉末55041
    • Table 4. Comparison of properties of green luminescent materials with Eu2+ as luminescence center

      View table
      View in Article

      Table 4. Comparison of properties of green luminescent materials with Eu2+ as luminescence center

      化学组成发射波长峰值/nm半峰宽/nm发光热稳定性/%量子效率/%参考文献
      Sr8ZnY(PO47∶Eu2+5208645.03(150 ℃)69.22/43.56(internal/external)44
      Ba5Si2O6Cl6∶Eu2+51050(157 ℃)44(internal)45
      Zeolite-3A∶Eu52336.646
      NaBaB9O15∶Eu2+51561110(227 ℃)83/45(internal/external)48
      SrSi2O2N2∶Eu2+52670(400 ℃)49
      Sr0.98Eu0.02Si2O2N254060(297 ℃)6850
    • Table 5. Comparison of properties of green luminescent materials with Mn2+ as luminescence center

      View table
      View in Article

      Table 5. Comparison of properties of green luminescent materials with Mn2+ as luminescence center

      化学组成发射波长峰值/nm半峰宽/nm内量子效率/%发光热稳定性/%参考文献
      Zn4B6O13∶Mn2+5403372101(250 ℃)51
      Zn2SiO4∶Mn2+5274276.270(140 ℃)52
      ZnB2O4∶Mn2+5414160.570(250 ℃)53
      Li2MgSiO4∶0.06Mn2+53767.63(150 ℃)54
      Na2ZnSiO4∶Mn2+5153074.9(125 ℃)55
      BaZnAl10O17∶Mn2+5153185.5995(150 ℃)56
      Zn3.88Mg0.1B6O13∶0.02Mn2+5423969(145 ℃)57
      Zn2GeO4∶Mn2+53449.598.558
      SrAl2Si2O8∶Mn2+5172645.687(177 ℃)59
    • Table 6. Performance comparison of green luminescent materials with Tb3+ as luminescence center and commercial powder packaged as white LED devices

      View table
      View in Article

      Table 6. Performance comparison of green luminescent materials with Tb3+ as luminescence center and commercial powder packaged as white LED devices

      绿色荧光粉红色荧光粉蓝色荧光粉相关色温/K显色指数色坐标参考文献
      Ba3(ZnB5O10)PO4∶Tb3+(Ca,Sr)AlSiN3∶Eu2+BaMgAl10O17∶Eu2+3 28283(0.370 6,0.283 8)62
      NaBaB9O15∶Tb3+CaAlSiN3∶Eu2+BaMgAl10O17∶Eu2+4 04183.763
      CaAl4O7∶Ce3+,Tb3+CaAlSiN3∶Eu2+BaMgAl10O17∶Eu2+4 70681.44(0.346 1,0.318 8)65
      Ga2GdHf2Al3O12∶Ce3+,Tb3+CaAlSiN3∶Eu2+BaMgAl10O17∶Eu2+3 57594.4(0.391,0.360)66
      Ga2LuHf2(AlO43∶Ce3+,Tb3+CaAlSiN3∶Eu2+BaMgAl10O17∶Eu2+3 57493.7(0.392 2,0.363 3)67
    Tools

    Get Citation

    Copy Citation Text

    Xing-can LI, Li-li LU, Chen-yang SHAO, Gui-lu WANG, Xi-gui ZHENG, Yue-long MA, Ye TIAN. Research progress of green luminescent materials for lighting and displays[J]. Chinese Journal of Liquid Crystals and Displays, 2023, 38(2): 160

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Aug. 17, 2022

    Accepted: --

    Published Online: Feb. 20, 2023

    The Author Email: Yue-long MA (uhgdmyl@haut.edu.cn), Ye TIAN (yetian@haut.edu.cn)

    DOI:10.37188/CJLCD.2022-0271

    Topics