Chinese Journal of Lasers, Volume. 42, Issue 9, 901001(2015)
Progress in Optical Focusing Techniques Aiming to Suppress Scattering Effect in Biomedical Tissues
[1] [1] Wang L V, Wu H. Biomedical Optics: Principles and Imaging[M]. Hoboken: Wiley, 2007: 323-342.
[2] [2] Xu Kexin, Gao Feng, Zhao Huijuan. Biomedical Photonics (2nd Edition) [M]. Beijing: Science Press, 2011: 212-220.
[3] [3] Zhang Zhenxi. New Technologies and Applications of Biomedical Photonics[M]. Beijing: Science Press, 2008: 224-237.
[4] [4] Masters B R, So P T C. Confocal microscopy and multi-photon excitation microscopy of human skin in vivo[J]. Optics Express, 2001, 8(1): 2-10.
[5] [5] Dolmans D E, Fukumura D, Jain R K. Photodynamic therapy for cancer[J]. Nature Reviews Cancer, 2003, 3: 380-387.
[6] [6] Born M, Wolf E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (7th Edition) [M]. Yang Jiasun Trans. Beijing: Publishing House of Electronics Industry, 2009: 401-408.
[7] [7] Soren D K, Bruce J T. Imaging: Focusing light in scattering media[J]. Nature Photonics, 2011, 5: 135-136.
[8] [8] Tyson R. Principles of Adaptive Optics (3rd Edition)[M]. Boca Raton: CRC Press, 2010: 1-10.
[9] [9] Ori K, Eran S, Yaron S. Looking around corners and through thin turbid layers in real time with scattered incoherent light[J]. Nature Photonics, 2012, 6: 549-553.
[10] [10] Mosk A P, Lagendijk A, Lerosey G, et al.. Controlling waves in space and time for imaging and focusing in complex media[J]. Nature Photonics, 2012, 6: 283-292.
[11] [11] Vellekoop I M, Lagendijk A, Mosk A P. Exploiting disorder for perfect focusing[J]. Nature Photonics, 2010, 4: 320-322.
[12] [12] Yaqoob Z, Psaltis D, Feld M S, et al.. Optical phase conjugation for turbidity suppression in biological samples[J]. Nature Photonics, 2008, 2: 110-115.
[13] [13] Vellekoop I M. Controlling the Propagation of Light in Disordered Scattering Media [D]. Enschede: University of Twente, 2008: 40-50.
[14] [14] Jesacher A, Maurer C, Schwaighofer A, et al.. Near-perfect hologram reconstruction with a spatial light modulator[J]. Optics Express, 2008, 16(4): 2597-2603.
[15] [15] Vellekoop I M, Mosk A P. Focusing coherent light through opaque strongly scattering media[J]. Optics Letters, 2007, 32(16): 2309-2311.
[16] [16] Vellekoop I M, Mosk A P. Phase control algorithms for focusing light through turbid media[J]. Optics Communications, 2008, 281(11): 3071-3080.
[17] [17] Beenakker C W J. Random-matrix theory of quantum transport[J]. Reviews of Modern Physics, 1997, 69(3): 731-808.
[18] [18] Dorokhov O N. On the coexistence of localized and extended electronic states in the metallic phase[J]. Solid State Communications, 1984, 51(6): 381-384.
[19] [19] Pendry J. Light finds a way through the maze[J]. Physics, 2008, 1: 20.
[20] [20] Vellekoop I M, Mosk A P. Universal optimal transmission of light through disordered materials[J]. Physical Review Letters, 2008, 101: 120601.
[21] [21] Kong F, Silverman R H, Liu L P, et al.. Photoacoustic- guided convergence of light through optically diffusive media[J]. Optics Letters, 2011, 36(11): 2053-2055.
[22] [22] Tay J W, Lai P, Suzuki Y, et al.. Ultrasonically encoded wavefront shaping for focusing into random media[J]. Scientific Reports, 2014, 4: 3918.
[23] [23] Lai P X, Wang L D, Tay J W, et al.. Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media[J]. Nature Photonics, 2015, 9: 126-132.
[24] [24] He G S. Optical phase conjugation: Principles, techniques, and applications[J]. Progress in Quantum Electronics, 2002, 26(3): 131-150.
[25] [25] Leith E N, Upatnieks J. Holographic imagery through diffusing media[J]. JOSA, 1966, 56(4): 523.
[26] [26] Cui M, McDowell E J, Yang C H. An in vivo study of turbidity suppression by optical phase conjugation (TSOPC) on rabbit ear[J]. Optics Express, 2010, 18(1): 25-30.
[27] [27] McDowell E J, Cui M, Vellekoop I M, et al.. Turbidity suppression from the ballistic to the diffusive regime in biological tissues using optical phase conjugation[J]. Journal of Biomedical Optics, 2010, 15(2): 025004.
[28] [28] Cui M, Yang C H. Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation[J]. Optics Express, 2010, 18(4): 3444-3455.
[29] [29] Vellekoop I M, Cui M,Yang C H. Digital optical phase conjugation of fluorescence in turbid tissue[J]. Applied Physics Letters, 2012, 101(8): 081108.
[30] [30] Thompson L A, Gardner C S. Instrumentation for Ground-Based Optical Astronomy[M]. New York: Springer, 1988: 337-344.
[31] [31] Xu X, Liu H, Wang L V. Time-reversed ultrasonically encoded optical focusing into scattering media[J]. Nature Photonics, 2011, 5: 154-157.
[32] [32] Yang C H. Time-reversal optical focusing for biophotonics applications[C]. SPIE, 2014, 8978: 89780K.
[33] [33] Liu H, Xu X, Lai P, et al.. Time-reversed ultrasonically encoded optical focusing into tissue-mimicking media with thickness up to 70 mean free paths[J]. Journal of Biomedical Optics, 2011, 16(8): 086009.
[34] [34] Suzuki Y, Xu X, Lai P, et al.. Energy enhancement in time-reversed ultrasonically encoded optical focusing using a photorefractive polymer[J]. Journal of Biomedical Optics, 2012, 17(8): 080507.
[35] [35] Lai P, Xu X, Liu H, et al.. Reflection-mode time-reversed ultrasonically encoded optical focusing into turbid media[J]. Journal of Biomedical Optics, 2011, 16(8): 080505.
[36] [36] Lai P, Xu X, Liu H, et al.. Time- reversed ultrasonically encoded optical focusing in biological tissue[J]. Journal of Biomedical Optics, 2012, 17(3): 030506.
[37] [37] Wang Y M, Judkewitz B, DiMarzio C A, et al.. Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasoundencoded light[J]. Nature Communications, 2012, 3: 928.
[38] [38] Si K, Fiolka R, Cui M. Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guide digital phase conjugation[J]. Nature Photonics, 2012, 6(10): 657-661.
[39] [39] Lai P, Suzuki Y, Xu X, et al.. Focused fluorescence excitation with time-reversed ultrasonically encoded light and imaging in thick scattering media[J]. Laser Physics Letters, 2013, 10(7): 075604.
[40] [40] Suzuki Y, Tay J W, Yang Q, et al.. Continuous scanning of a time-reversed ultrasonically encoded optical focus by reflection-mode digital phase conjugation[J]. Optics Letters, 2014, 39(12): 3441-3444.
[41] [41] Judkewitz B, Wang Y M, Horstmeyer R, et al.. Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE) [J]. Nature Photonics, 2013, 7: 300-305.
[42] [42] Jurbergs D, Bruder F K, Deuber F, et al.. New recording materials for the holographic industry[C]. SPIE, 2009, 7233: 72330K.
[43] [43] Yang Q, Xu X, Lai P, et al.. Time-reversed ultrasonically encoded optical focusing using two ultrasonic transducers for improved ultrasonic axial resolution[J]. Journal of Biomedical Optics, 2013, 18(11): 110502.
[44] [44] Yang Q, Xu X, Lai P, et al.. Improving the axial resolution in time-reversed ultrasonically encoded (TRUE) optical focusing with dual ultrasonic waves[C]. SPIE, 2014, 8943: 894338.
[45] [45] Liu Y, Lai P, Ma C, et al.. Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light[J]. Nature Communications, 2015, 6: 5904.
[46] [46] Zhou E H J, Ruan H W, Yang C H, et al.. Focusing on moving targets through scattering samples[J]. Optica, 2014, 1(4): 227-232.
[47] [47] Ma C, Xu X, Liu Y, et al.. Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media [J]. Nature Photonics, 2014, 8(12): 931-936.
[48] [48] Popoff S M, Lerosey G, Carminati R, et al.. Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media[J]. Physical Review Letters, 2010, 104: 100601.
[49] [49] Popoff S M, Lerosey G, Fink M, et al.. Image transmission through an opaque material[J]. Nature Communications, 2010, 1(6): 1-5.
[50] [50] Popoff S M, Aubry A, Lerosey G, et al.. Exploiting the time reversal operator for adaptive optics selective focusing, and scattering pattern analysis[J]. Physical Review Letters, 2011, 107: 263901.
[52] [52] Chang C Y, Cheng L C, Su H W, et al.. Wavefront sensorless adaptive optics temporal focusing-based multiphoton microscopy[J]. Biomedical Optics Express, 2014, 5(6): 1768-1777.
[53] [53] Yoon I, Li J Z, Shim Y K. Advance in photosensitizers and light delivery for photodynamic therapy[J]. Clinical Endoscopy, 2013, 46(1): 7-23.
[54] [54] Tomas C, Michael M, Kishan D. In situ wavefront correction and its application to micromanipulation[J]. Nature Photonics, 2010, 4: 388-394.
Get Citation
Copy Citation Text
Yang Qiang, Cao Liangcai, Jin Guofan. Progress in Optical Focusing Techniques Aiming to Suppress Scattering Effect in Biomedical Tissues[J]. Chinese Journal of Lasers, 2015, 42(9): 901001
Received: Jan. 25, 2015
Accepted: --
Published Online: Sep. 6, 2015
The Author Email: Qiang Yang (qiang_yang@mail.tsinghua.edu.cn)