Acta Optica Sinica, Volume. 43, Issue 21, 2115003(2023)

Depth Estimation Method of Light Field Based on Attention Mechanism of Neighborhood Pixel

Xi Lin, Yang Guo, Yongqiang Zhao*, and Naifu Yao
Author Affiliations
  • School of Automation, Northwestern Polytechnical University, Xi'an 710129, Shaanxi , China
  • show less
    Figures & Tables(14)
    Subaperture image array of light field
    Schematic diagram of adjacent pixels of subaperture image sequence
    Diagram of Mix Attention
    Sequence image feature extraction module
    Multi-stream depth estimation network based on Mix Attention
    MSE and BP iteration process. (a) MSE iteration process; (b) BP iteration process
    Visual representation of BP
    Visual representation of MSE
    Our algorithm in the scene Boxes
    Results in the real scene datasets
    • Table 1. Comparison of BP between proposed method and other algorithms

      View table

      Table 1. Comparison of BP between proposed method and other algorithms

      BackgammonDotsPyramidsStripsBoxesCottonSideboardAvg
      OFSY_3304.82837.6700.35618.64019.2463.03610.35513.447
      CAE3.92412.4011.6817.87217.8853.3699.8458.140
      EPI-refocus4.3053.9040.4243.92212.1700.5595.9554.463
      EPINET3.5012.4900.1592.45712.3410.4474.4623.694
      OBER-cross+ANP3.4130.9740.3643.06510.7591.0185.6713.609
      LFattNET3.1261.4320.1952.93311.0440.2722.8703.125
      SPO-MO3.4502.7810.0504.11815.4942.1617.5155.081
      Fast-LFnet5.13821.1690.6209.44218.6990.7147.0327.467
      OAVC3.12069.1000.8302.90016.1002.55012.40015.286
      OACC-Net3.9311.5100.1572.92010.7000.3123.3503.269
      Ours2.1790.7720.3651.77912.0870.4973.9563.091
    • Table 2. Comparison of MSE between proposed method and other algorithms

      View table

      Table 2. Comparison of MSE between proposed method and other algorithms

      BackgammonDotsPyramidsStripsBoxesCottonSideboardAvg
      OFSY_3307.54914.7560.0087.2699.5612.6532.4786.325
      CAE6.0745.0820.0483.5568.4241.5060.8763.652
      EPI-refocus5.5533.0630.0411.8707.5520.5731.6092.894
      EPINET3.7051.4750.0070.9325.9680.1970.7981.869
      OBER-cross+ANP4.7991.7570.0081.4354.7500.5550.9412.035
      LFattNET3.6481.4250.0040.8923.9960.2090.5311.529
      SPO-MO4.1333.7630.0091.93410.3741.3290.9323.211
      Fast-LFnet1.4883.0700.0180.2314.2600.3390.7421.450
      OAVC3.84016.6000.0401.3206.9900.6001.0504.349
      OACC-Net3.9381.4180.0040.8452.8920.1620.5421.400
      Ours2.0560.7950.0100.3393.7710.2600.6491.126
    • Table 3. Comparison of operation time

      View table

      Table 3. Comparison of operation time

      Algorithms

      Avg runtime

      Algorithms

      Avg runtime

      Ours

      0.387

      SPO-MO

      2115.417

      LFattNET

      5.862

      EPI-refocus

      72.742

      OAVC

      4.220

      EPINET

      2.041

      Fast-LFnet

      0.624

    • Table 4. Results of ablation study

      View table

      Table 4. Results of ablation study

      ModelMSE /pixelBP /%
      TrainingTestingTrainingTesting
      Baseline1.9322.27912.08714.610
      Baselines+3D_Conv1.4752.0129.42411.919
      Baseline+Mix_Att1.3521.6565.4069.825
      Full0.7281.1842.8384.820
    Tools

    Get Citation

    Copy Citation Text

    Xi Lin, Yang Guo, Yongqiang Zhao, Naifu Yao. Depth Estimation Method of Light Field Based on Attention Mechanism of Neighborhood Pixel[J]. Acta Optica Sinica, 2023, 43(21): 2115003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Apr. 7, 2023

    Accepted: Jun. 26, 2023

    Published Online: Nov. 8, 2023

    The Author Email: Zhao Yongqiang (zhaoyq@nwpu.edu.cn)

    DOI:10.3788/AOS230786

    Topics