Chinese Optics, Volume. 15, Issue 4, 835(2022)

Investigation of stimulated Brillouin scattering in As2S3 photonic crystal fibers at the mid-infrared waveband

Hui-jie SUN, Shang-lin HOU*, and Jing-li LEI
Author Affiliations
  • School of Science, Lanzhou University of Technology, Lanzhou 730050, China
  • show less
    References(30)

    [1] GUAN X, SHI W, RUSCH L A. Ultra-dense wavelength-division multiplexing with microring modulator[J]. Journal of Lightwave Technology, 39, 4300-4306(2021).

    [2] LUBANA A, KAUR S, MALHOTRA Y. Performance optimization of a super-dense wavelength division multiplexing system employing a Raman + erbium–ytterbium doped fiber hybrid optical amplifier[J]. Journal of Optical Technology, 88, 308-314(2021).

    [3] MA Z Y, WU Q Q, LI Q H, et al. Ultra-dense wavelength division multiplexing passive optical network[J]. Laser & Optoelectronics Progress, 58, 0500006(2021).

    [4] ZHANG CH J, GAO M Y, SHI Y, et al. Experimental comparison of orthogonal frequency division multiplexing and universal filter multi-carrier transmission[J]. Journal of Lightwave Technology, 39, 7052-7060(2021).

    [5] XU X Y, YUE D W. Orthogonal frequency division multiplexing modulation techniques in visible light communication[J]. Chinese Optics, 14, 516-527(2021).

    [6] ZHU K, ZHOU B, WU H, et al. Multipath distributed acoustic sensing system based on phase-sensitive optical time-domain reflectometry with frequency division multiplexing technique[J]. Optics and Lasers in Engineering, 142, 106593(2021).

    [7] WU SH Z, WEN H Q, CHEN X H. Method for reducing the influence of crosstalk on quasi-distributed sensing network with time-division multiplexing fibre Bragg gratings[J]. Journal of Physics:Conference Series, 1754, 012212(2021).

    [8] PEI L, LI ZH Q, WANG J SH, et al. Review on gain equalization technology of fiber amplifier using space division multiplexing[J]. Acta Optica Sinica, 41, 0106001(2021).

    [9] PUTTNAM B J, RADEMACHER G, LUÍS R S. Space-division multiplexing for optical fiber communications[J]. Optica, 8, 1186-1203(2021).

    [10] DEROH M, BEUGNOT J C, HAMMANI K, et al. Comparative analysis of stimulated Brillouin scattering at 2  µm in various infrared glass-based optical fibers[J]. Journal of the Optical Society of America B, 37, 3792-3800(2020).

    [11] WANG X, ZHOU P, WANG X L, et al. Tunable slow light via stimulated Brillouin scattering at 2 μm based on Tm-doped fiber amplifiers[J]. Optics Letters, 40, 2584-2587(2015).

    [12] TAO G M, EBENDORFF-HEIDEPRIEM H, STOLYAROV A M, et al. Infrared fibers[J]. Advances in Optics and Photonics, 7, 379-458(2015).

    [13] ALIMAGHAM F, WINTERBURN J, DOLMAN B, et al. Real-time bioprocess monitoring using a mid-infrared fibre-optic sensor[J]. Biochemical Engineering Journal, 167, 107889(2021).

    [14] WANG H Y, BAKER C, CHEN L, et al. Stimulated Brillouin scattering in high-birefringence elliptical-core As2Se3-PMMA microfibers[J]. Optics Letters, 46, 945-948(2021).

    [15] CHEN X Y, YAN X, ZHANG X N, et al. Theoretical investigation of mid-infrared temperature sensing based on four-wave mixing in a CS2-filled GeAsSeTe microstructured optical fiber[J]. IEEE Sensors Journal, 21, 10711-10718(2021).

    [16] CARCREFF J, CHEVIRÉ F, GALDO E, et al. Mid-infrared hollow core fiber drawn from a 3D printed chalcogenide glass preform[J]. Optical Materials Express, 11, 198-209(2021).

    [17] XU Q, GAO W Q, LI X, et al. Investigation on optical and acoustic fields of stimulated Brillouin scattering in As2S3 suspended-core microstructured optical fibers[J]. Optik, 133, 51-59(2017).

    [18] FLOREA C, BASHKANSKY M, DUTTON Z, et al. Stimulated Brillouin scattering in single-mode As2S3 and As2Se3 chalcogenide fibers[J]. Optics Express, 14, 12063-12070(2006).

    [19] VANI P, VINITHA G, NASEER K A, et al. Thulium-doped barium tellurite glasses: structural, thermal, linear, and non-linear optical investigations[J]. Journal of Materials Science:Materials in Electronics, 32, 23030-23046(2021).

    [20] [20] DEROH M, BEUGNOT J C, KIBLER B, et al. . Stimulated Brillouin scattering in Germaniumdopedce optical fibers up to 98% mol doping level[C]. Proceedings of Specialty Optical Fibers 2018, Optica Publishing Group, 2018: SoTu3G. 2.

    [21] LAMBIN-IEZZI V, LORANGER S, SAAD M, et al. Stimulated Brillouin scattering in SM ZBLAN fiber[J]. Journal of Non-Crystalline Solids, 359, 65-68(2013).

    [22] SHINKAWA K, ODA Y, MA Z T, et al. Transient stimulated brillouin scattering in multimode As2S3 glass fiber[J]. Japanese Journal of Applied Physics, 48, 070215(2009).

    [23] [23] DIOUF M, TRICHLLI A, ZGHAL M. Stimulated Brillouin scatteringbased slow light using singlemode As2S3 chalcogenide photonic crystal fiber f temperature sensing[C]. Proceedings of Frontiers in Optics 2019, Optica Publishing Group, 2019: JTu3A. 63.

    [24] RODNEY W S, MALITSON I H, KING T A. Refractive index of arsenic trisulfide[J]. Journal of the Optical Society of America, 48, 633-636(1958).

    [25] WIEDERHECKER G S, DAINESE P, MAYER ALEGRE T P. Brillouin optomechanics in nanophotonic structures[J]. APL Photonics, 4, 071101(2019).

    [26] [26] TIMOSHENKO S P, GOODIER J N. They of Elasticity[M]. New Yk: McGrawHill, 1970.

    [27] DEMIR H, OZSOY S. Solid-core square-lattice photonic crystal fibers: comparative studies of the single-mode regime and numerical aperture for circular and square air-holes[J]. Optical and Quantum Electronics, 42, 851-862(2011).

    [28] DASGUPTA S, POLETTI F, LIU SH, et al. Modeling brillouin gain spectrum of solid and microstructured optical fibers using a finite element method[J]. Journal of Lightwave Technology, 29, 22-30(2011).

    [29] [29] AGRAWAL G P. Nonlinear Fiber Optics[M]. 4th ed. Amsterdam: Academic Press, 2007.

    [30] OGUSU K, LI H P, KITAO M. Brillouin-gain coefficients of chalcogenide glasses[J]. Journal of the Optical Society of America B, 21, 1302-1304(2004).

    Tools

    Get Citation

    Copy Citation Text

    Hui-jie SUN, Shang-lin HOU, Jing-li LEI. Investigation of stimulated Brillouin scattering in As2S3 photonic crystal fibers at the mid-infrared waveband[J]. Chinese Optics, 2022, 15(4): 835

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Original Article

    Received: Feb. 23, 2022

    Accepted: Apr. 8, 2022

    Published Online: Sep. 6, 2022

    The Author Email: Shang-lin HOU (houshanglin@vip.163.com)

    DOI:10.37188/CO.EN.2022-0003

    Topics