Electronics Optics & Control, Volume. 32, Issue 6, 75(2025)

MLEC-YOLO: Enhanced Low-Frequency Features for Military Object Detection Network at Night

YUAN Yidong1,2, LI Zhigang1,2, ZHANG Can1,2, and LI Yingqi1,2
Author Affiliations
  • 1College of artificial Intelligence, North China University of Science and Technology, Tangshan 063000, China
  • 2Hebei Key Laboratory of Industrial Intelligent Sensing, Tangshan 063000, China
  • show less
    References(18)

    [1] [1] JANAKIRAMAIAH B, KALYANI G, KARUNA A, et al. Military object detection in defense using multi-level capsule networks[J]. Soft Computing, 2021, 27(2): 1045-1059.

    [2] [2] LIU M Z, DI X G. Extraordinary MHNet: military high-level camouflage object detection network and dataset[J]. Neurocomputing, 2023, 549: 126466.

    [3] [3] LIU H, YU Y, LIU S, et al. A military object detection model of UAV reconnaissance image and feature visualization[J]. Applied Sciences, 2022, 12(23): 12236.

    [4] [4] ZHUANG X, LI D, WANG Y, et al. Military target detection method based on EfficientDet and generative adversarial network[J]. Engineering Applications of Artificial Intelligence, 2024, 132: 107896.

    [6] [6] LI Z, CARO J O, RUSAK E, et al. Robust deep learning object recognition models rely on low frequency information in natural images[J]. PLOS Computational Biology, 2023, 19(3): e1010932.

    [7] [7] ZHANG W, JIAO L, LI Y, et al. Laplacian feature pyramid network for object detection in VHR optical remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5604114.

    [8] [8] REIS D, KUPEC J, HONG J, et al. Real-time flying object detection with YOLOv8[EB/OL]. (2023-05-17)[2024-05-21]. https://doi.org/10.48550/arXiv.2305.09972.

    [9] [9] OUYANG D, HE S, ZHANG G, et al. Efficient multi-scale attention module with cross-spatial learning[C]//2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Rhodes Island: IEEE, 2023: 1-9.

    [10] [10] YIN X, YU Z, FEI Z, et al. PE-YOLO: pyramid enhancement network for dark object detection[C]//International Conference on Artificial Neural Networks. Cham: Springer, 2023: 163-174.

    [11] [11] QI Y, HE Y, QI X, et al. Dynamic snake convolution based on topological geometric constraints for tubular structure segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Paris: IEEE, 2023: 6070-6079.

    [12] [12] YU F, CHEN H, WANG X, et al. BDD100K: a diverse driving dataset for heterogeneous multitask learning[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Seattle: IEEE, 2020: 2633-2642.

    [13] [13] REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08)[2024-05-21]. https://doi.org/10.48550/arXiv.1804.02767.

    [14] [14] JOCHER G, CHAURASIA A, STOKEN A, et al. ultralytics/YOLOv5: v7. 0-YOLOv5 SOTA realtime instance seg-mentation[Z]. Zenodo, 2022.

    [15] [15] WANG C Y, YEH I H, LIAO H Y M. YOLOv9: learning what you want to learn using programmable gradient information [EB/OL]. (2024-02-29)[2024-05-21]. https://doi.org/10.48550/arXiv.2402.13616.

    [16] [16] CHEN Y, YUAN X, WANG J, et al. YOLO-MS: rethinking multi-scale representation learning for real-time object detection[EB/OL]. (2023-08-10)[2024-05-21]. https://doi.org/10.1109/tpami.2025.3538473.

    [17] [17] LI F, ZENG A, LIU S, et al. Lite DETR: an interleaved multi-scale encoder for efficient DETR[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver: IEEE, 2023: 18558-18567.

    [18] [18] ZHAO Y, LV W, XU S, et al. DETRs beat YOLOs on real-time object detection[C]//2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Seattle: IEEE, 2024: 16965-16974.

    [19] [19] KENNERLEY M, WANG J G, VEERAVALLI B, et al. 2PCNet: two-phase consistency training for day-to-night unsupervised domain adaptive object detection[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver: IEEE, 2023: 11484-11493.

    Tools

    Get Citation

    Copy Citation Text

    YUAN Yidong, LI Zhigang, ZHANG Can, LI Yingqi. MLEC-YOLO: Enhanced Low-Frequency Features for Military Object Detection Network at Night[J]. Electronics Optics & Control, 2025, 32(6): 75

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 21, 2024

    Accepted: Jun. 12, 2025

    Published Online: Jun. 12, 2025

    The Author Email:

    DOI:10.3969/j.issn.1671-637x.2025.06.012

    Topics