Chinese Journal of Lasers, Volume. 48, Issue 4, 0401005(2021)

Research Progress of Laser-Induced Fluorescence Technology in Combustion Diagnostics

Jiajian Zhu*, Minggang Wan, Ge Wu, Bo Yan, Yifu Tian, Rong Feng, and Mingbo Sun
Author Affiliations
  • Science and Technology on Scramjet Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan 410073, China
  • show less
    Figures & Tables(31)
    Schematic diagram of the energy level transition of the LIF
    Schematic diagram of the PLIF laser sheet
    Jet flame obtained by single-species PLIF imaging. (a) Experimental system; (b) HCO PLIF[56]; (c) CH2O PLIF; (d) CH PLIF[61]; (e) OH PLIF[62]; (f) CH3 PF-LIF[63]
    Instantaneous flame structure acquired by OH PLIF in scramjet engines. (a) Hydrogen injection[66]; (b) ethylene injection[31]; (c) ethylene injection with high-resolution imaging[69]
    Instantaneous flame structures obtained by different PLIF methods. (a) CH PLIF[77]; (b) CH PLIF[31]; (c) CH PLIF[76]; (d) CH2O PLIF[78]
    Multi-species PLIF imaging of the jet flames. (a) Jet flame image[27]; (b) simultaneous CH2O/OH PLIF image[27]; (c) simultaneous CH2O/OH/HCO PLIF image[61]; (d) simultaneous measurement images of the CH3 PF-LIF and CH2O PLIF
    Synchronous PLIF image of the cavity-stable flame scramjet combustion chamber. (a) spanwise plane; (b) streamwise plane[76]
    Quantitative extraction of flame structure parameters based on PLIF. (a) Quantitative extraction of flame surface, flame surface density and progress variables based on OH PLIF[83]; (b) thickness of the reaction zone of the high turbulent flame[86]; (c) CH3 PF-LIF/CH2O PLIF simultaneous measurement image and ridge extraction results; (d) OH PLIF-based extraction of scramjet f
    Application of different tracer PLIF in the characterization of engine fuel distribution. (a) Acetone PLIF[106-107]; (b) kerosene PLIF[108]; (c) NO PLIF[109]; (d) NO PLIF[110]; (e) toluene PLIF[111]; (f) f
    Application of tracer-PLIF to measure the equivalence ratio and fuel distribution in the different engines. (a) 3-pentanone PLIF in a V-shaped flame[35]; (b) acetone PLIF in a gasoline engine[118]; (c) toluene PLIF in a gasoline engine[118]; (d) TMB PLIF in a gasoline engine[118]; (e) toluene PLI
    Application of tracer-PLIF in measuring the temperature distribution of different engines. (a) Temperature distribution of the expansion tube using toluene PLIF[125]; (b) temperature distribution of the supersonic expansion tube using toluene PLIF[126]; (c) temperature distribution of HCCI engine using acetone/3-pentanone PLIF[127]; (d) temperat
    Schematic diagram of the TLAF technique. (a) Three-level diagram of the In atom[37]; (b) schematic diagram of the TLAF measurement system[39]
    Temperature characteristics of typical atomic elements. (a) Temperature sensitivity of the atomic elements for TLAF; (b) variation of the particle number distribution of the upper energy level of the tracer atom with temperature[48]
    Different seeding methods for the In atom. (a) InCl3 solution seeding[137]; (b) In seeding by laser ablation[139]; (c) In2O3 seeding by flame spay pyrolysis[140]; (d) TMI seeding by spray pyrolysis[141]
    Combustion filed temperature distribution measured by linear TLAF with In atoms as tracers. (a) TLAF and Mie scattering image[144]; (b)[39]-(c)[37]average temperature field distribution of laminar premixed flame; (d) fluorescence transient distribution image of methane/air jet premixed flames[140]
    Combustion filed temperature distribution measured by nonlinear TLAF with In atoms as tracers. (a) Temperature distribution in a laminar premixed flame[145]; (b) temperature distribution in a non-premixed flame[150]; (c) temperature distribution in a non-premixed flame[147]; (d) temperature distribution in a slot burner[<xref ref-type="bibr
    Schematic diagram of the MTV technology
    Typical profile of velocimetry images. (a) NO PLIF images in a supersonic boundary layer[157]; (b) velocity distribution in a supersonic boundary layer[157]; (c) NO PLIF images in a low speed jet flow[155] ; (d) velocity distribution in a low speed jet flow[155]
    KTV technique. (a) Schematic of the KTV speed measurement device; (b) Typical speed measurement results[158]
    Profile image of the typical mean velocity. (a) Freestream[159]; (b) boundary layer[174]
    HTV images. (a) Single-shot HTV image[180]; (b) images of the mean velocity and RMS fluctuation[181]
    HTV images. (a) HTV image of unreacted flow field; (b) HTV image of combustion flow field; (c) velocity distribution of unreacted flow field; (d) velocity distribution of combustion flow field[40]
    High-repetition PLIF images in scramjet engines. (a) 10 kHz OH PLIF images[189]; (b) 100 kHz CH2O PLIF images[41]
    3D reconstruction of the flame structure. (a) Experimental schematic diagram; (b) 3D reconstruction of the OH radicals[194]
    VLIF technique. (a) Schematic of the experimental setup; (b) three-dimensional reconstruction of the CH radicals in a flame[195]
    Simultaneous measurement images of PLIF/PIV. (a) PIV and CH2O/OH PLIF images for the bluff body flame[46]; (b) PIV and OH PLIF images for the lifted flame[200]; (c) PIV, kerosene PLIF and OH PLIF images for the swirling flame[45]
    Simultaneous measurement images of PLIF and Rayleigh scattering. (a) OH/CH2O PLIF and Rayleigh scattering images[212]; (b) CH2O/OH/CH PLIF and Rayleigh scattering images[213]; (c) CH2O PLIF and Rayleigh scattering images[214]
    • Table 1. Common fluorescence species and typical excitation schemes

      View table

      Table 1. Common fluorescence species and typical excitation schemes

      SpeciesExcitation wavelength /nmLaser systemDetected fluorescence range /nmPhysical indication
      OH~282dye laser[49]dye laser[50]~309product zone of hydrocarbon combustion
      CH~387XeCl laser[51]Alexandrite laser[52]~431reaction zone of hydrocarbon combustion
      CH2O~314dye laser[53]300-360preheating zone of hydrocarbon combustion
      ~355~352.48Nd∶YAG laser[54]dye laser[55]380-550
      HCO~259Alexandrite laser[56]280-350heating releasing zone of hydrocarbon combustion
      CN~359dye laser[57]~389key intermediate species of nitrogen chemistry in combustion
      Alexandrite laser[57]
      NO~226dye laser[58]~250combustion emission
      H-atom~205dye laser[59]~656two-photon process, key intermediate species in hydrocarbon combustion
      O-atom~226dye laser[60]~845two-photon process, key intermediate species in combustion
    • Table 2. Physical and chemical parameters of common tracer substances

      View table

      Table 2. Physical and chemical parameters of common tracer substances

      ParameterDensity /(g·cm-3)25 ℃Boiling point /℃Autoignition temperature in air /℃Excitation wavelength /nmFluorescence wavelength /nmMeasurement parameterApplicationenvironment
      Acetone[101]0.7956.1465-727225-325300-500component concentration/temperaturelow/high pressure, oxygen-free
      3-pentanone[99,101]0.81102425-608248-312300-500component concentration/temperaturelow/high pressure, oxygen-free
      Toluene[100]0.87110.6480-810~248260-360component concentration/temperaturelow pressure, oxygen-free
      NO[95]1.33×10-3-151--~226226-290component concentrationlow/high pressure, oxygen-free
    • Table 3. Relevant physical constants for the different atoms used for TLAF[48]

      View table

      Table 3. Relevant physical constants for the different atoms used for TLAF[48]

      Atomic elementEnergy gap /cm-1TransitionsFluorescence wavelength /nm
      Ga826.194P1/2 → 5S1/2403
      4P3/2 → 5S1/2417
      In2212.5985P1/2 → 6S1/2410
      5P3/2 → 6S1/2451
      Th7792.76P1/2 → 7S1/2378
      6P3/2 → 7S1/2535
    • Table 4. Parameters of the PLIF speed measurement technology

      View table

      Table 4. Parameters of the PLIF speed measurement technology

      VelocimetryTracerλwrite /nmExcitationλread /nm
      APARTNO193[153]/355[154]N2+193 nmN2++e-N+O2→NO+O226
      VENOMNO193[155]/308[156]/355[157]NO2+355 nm→NO+O226
      KTVKr214.7[158]Kr+2214.7 nm→Kr*760.2[158]/769.5[159]
      HTVOH193[40]H2O+193 nm→OH+H248[160]/283[40]/308[161]
      OTVO3193[160]O2+193 nm→O+OO+O2+M→O3+M248
      NH-PLIFNH355[162]N2+6355 nmN2++e-N+H2O→NH+OH337
    Tools

    Get Citation

    Copy Citation Text

    Jiajian Zhu, Minggang Wan, Ge Wu, Bo Yan, Yifu Tian, Rong Feng, Mingbo Sun. Research Progress of Laser-Induced Fluorescence Technology in Combustion Diagnostics[J]. Chinese Journal of Lasers, 2021, 48(4): 0401005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue: SPECIAL ISSUE FOR "NATIONAL UNIVERSITY OF DEFENSE TECHNOLOGY"

    Received: Jul. 1, 2020

    Accepted: Sep. 15, 2020

    Published Online: Feb. 4, 2021

    The Author Email: Zhu Jiajian (jjzhu@nudt.edu.cn)

    DOI:10.3788/CJL202148.0401005

    Topics