Journal of Synthetic Crystals, Volume. 54, Issue 4, 708(2025)

Theoretical Study of Ni-MoTiNO for Electrochemical N2 Reduction Reaction

CAO Qi and CUI Luyao*
Author Affiliations
  • College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
  • show less
    References(30)

    [1] [1] JIA K, WANG Y, PAN Q, et al. Enabling the electrocatalytic fixation of N2 to NH3 by C-doped TiO2 nanoparticles under ambient conditions[J]. Nanoscale Advances, 2019, 1(3): 961-964.

    [2] [2] MU J J, GAO X W, LIU Z M, et al. Boosting nitrogen electrocatalytic fixation by three-dimensional TiO2-N nanowire arrays[J]. Journal of Energy Chemistry, 2022, 75: 293-300.

    [3] [3] AZOFRA L M, LI N, MACFARLANE D R, et al. Promising prospects for 2D d2-d4 M3C2 transition metal carbides (MXenes) in N2 capture and conversion into ammonia[J]. Energy & Environmental Science, 2016, 9(8): 2545-2549.

    [4] [4] ABGHOUI Y, GARDEN A L, HLYNSSON V F, et al. Enabling electrochemical reduction of nitrogen to ammonia at ambient conditions through rational catalyst design[J]. Physical Chemistry Chemical Physics, 2015, 17(7): 4909-4918.

    [5] [5] ABGHOUI Y, GARDEN A L, HOWALT J G, et al. Electroreduction of N2 to ammonia at ambient conditions on mononitrides of Zr, Nb, Cr, and V: a DFT guide for experiments[J]. ACS Catalysis, 2016, 6(2): 635-646.

    [6] [6] ZHANG R, ZHANG Y, REN X, et al. High-efficiency electrosynthesis of ammonia with high selectivity under ambient conditions enabled by VN nanosheet array[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 9545-9549.

    [7] [7] ZHANG X P, KONG R M, DU H T, et al. Highly efficient electrochemical ammonia synthesisvianitrogen reduction reactions on a VN nanowire array under ambient conditions[J]. Chemical Communications, 2018, 54(42): 5323-5325.

    [8] [8] YANG X, NASH J, ANIBAL J, et al. Mechanistic insights into electrochemical nitrogen reduction reaction on vanadium nitride nanoparticles[J]. Journal of the American Chemical Society, 2018, 140(41): 13387-13391.

    [9] [9] KANG S H, WANG J L, ZHANG S B, et al. Plasma-etching enhanced titanium oxynitride active phase with high oxygen content for ambient electrosynthesis of ammonia[J]. Electrochemistry Communications, 2019, 100: 90-95.

    [10] [10] GUO C X, RAN J R, VASILEFF A, et al. Rational design of electrocatalysts and photo(electro) catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions[J]. Energy & Environmental Science, 2018, 11(1): 45-56.

    [11] [11] WU G, SANTANDREU A, KELLOGG W, et al. Carbon nanocomposite catalysts for oxygen reduction and evolution reactions: from nitrogen doping to transition-metal addition[J]. Nano Energy, 2016, 29: 83-110.

    [12] [12] KUMAR C V S, SUBRAMANIAN V. Can boron antisites of BNNTs be an efficient metal-free catalyst for nitrogen fixation?-A DFT investigation[J]. Physical Chemistry Chemical Physics, 2017, 19(23): 15377-15387.

    [13] [13] LI W Y, WU T X, ZHANG S B, et al. Nitrogen-free commercial carbon cloth with rich defects for electrocatalytic ammonia synthesis under ambient conditions[J]. Chemical Communications, 2018, 54(79): 11188-11191.

    [14] [14] LIU Y M, SU Y, QUAN X, et al. Facile ammonia synthesis from electrocatalytic N2 reduction under ambient conditions on N-doped porous carbon[J]. ACS Catalysis, 2018, 8(2): 1186-1191.

    [15] [15] QIU W B, XIE X Y, QIU J D, et al. High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst[J]. Nature Communications, 2018, 9(1): 3485.

    [16] [16] MARS P, VAN KREVELEN D W. Oxidations carried out by means of vanadium oxide catalysts[J]. Chemical Engineering Science, 1954, 3: 41-59.

    [17] [17] YANG Y L, LIU J D, WEI Z X, et al. Transition metal-dinitrogen complex embedded graphene for nitrogen reduction reaction[J]. ChemCatChem, 2019, 11(12): 2821-2827.

    [18] [18] CAI L J, ZHANG N, QIU B C, et al. Computational design of transition metal single-atom electrocatalysts on PtS2 for efficient nitrogen reduction[J]. ACS Applied Materials & Interfaces, 2020, 12(18): 20448-20455.

    [19] [19] BRAUER G, REUTHER H. Phasen des ternren systems vanadium-stickstoff-sauerstoff[J]. Zeitschrift Fr Anorganische und Allgemeine Chemie, 1973, 395(2/3): 151-158.

    [20] [20] YU H J, WANG Z Q, YANG D D, et al. Bimetallic Ag3Cu porous networks for ambient electrolysis of nitrogen to ammonia[J]. Journal of Materials Chemistry A, 2019, 7(20): 12526-12531.

    [21] [21] SU J F, ZHAO H Y, FU W W, et al. Fine rhodium phosphides nanoparticles embedded in N, P dual-doped carbon film: new efficient electrocatalysts for ambient nitrogen fixation[J]. Applied Catalysis B: Environmental, 2020, 265: 118589.

    [22] [22] CHU K, LIU YP, LI Y B, et al. Efficient electrocatalytic N2 reduction on CoO quantum dots[J]. Journal of Materials Chemistry A, 2019, 9: 4389-4394.

    [23] [23] XIANG X J, WANG Z, SHI X F, et al. Ammonia synthesis from electrocatalytic N2 reduction under ambient conditions by Fe2O3 nanorods[J]. ChemCatChem, 2018, 10(20): 4530-4535.

    [24] [24] ZHANG X X, WU T W, WANG H B, et al. Boron nanosheet: an elemental two-dimensional (2D) material for ambient electrocatalytic N2-to-NH3 fixation in neutral media[J]. ACS Catal, 2019, 9(5): 4609-4615.

    [25] [25] KUMAR R D, WANG Z Q, LI C J, et al. Trimetallic PdCuIr with long-spined sea-urchin-like morphology for ambient electroreduction of nitrogen to ammonia[J]. Journal of Materials Chemistry A, 2019, 7: 3190-3196.

    [26] [26] LI L Q, TANG C, XIA B Q, et al. Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction[J]. ACS Catal, 2019, 9(4): 2902-2908.

    [27] [27] ZHANG Y, QIU W B, MA Y J, et al. High-performance electrohydrogenation of N2 to NH3 catalyzed by multishelled hollow Cr2O3 microspheres under ambient conditions[J]. ACS Catalysis, 2018, 8(9): 8540-8544.

    [28] [28] WANG B, CHAKOUMAKOS B C, SALES B C, et al. Synthesis, crystal structure, electrical, magnetic, and electrochemical lithium intercalation properties of vanadium oxynitrides[J]. Journal of Solid State Chemistry, 1996, 122(2): 376-383.

    [29] [29] LUMEY M W, DRONSKOWSKI R. First-principles electronic structure, chemical bonding, and high-pressure phase prediction of the oxynitrides of vanadium, niobium, and tantalum[J]. Zeitschrift Fr Anorganische und Allgemeine Chemie, 2005, 631(5): 887-893.

    [30] [30] SCOPEL W L, FANTINI M C A, ALAYO M I, et al. Local structure and bonds of amorphous silicon oxynitride thin films[J]. Thin Solid Films, 2002, 413(1/2): 59-64.

    Tools

    Get Citation

    Copy Citation Text

    CAO Qi, CUI Luyao. Theoretical Study of Ni-MoTiNO for Electrochemical N2 Reduction Reaction[J]. Journal of Synthetic Crystals, 2025, 54(4): 708

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 10, 2024

    Accepted: Jun. 5, 2025

    Published Online: Jun. 5, 2025

    The Author Email: CUI Luyao (luyao_cui@163.com)

    DOI:10.16553/j.cnki.issn1000-985x.2024.0242

    Topics