Photonics Research, Volume. 10, Issue 4, 958(2022)
Imaging lattice switching with Talbot effect in reconfigurable non-Hermitian photonic graphene
[1] V. V. Konotop, J. Yang, D. A. Zezyulin. Nonlinear waves in PT-symmetric systems. Rev. Mod. Phys., 88, 035002(2016).
[2] R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, D. N. Christodoulides. Non-Hermitian physics and PT symmetry. Nat. Phys., 14, 11-19(2017).
[3] L. Feng, R. El-Ganainy, L. Ge. Non-Hermitian photonics based on parity–time symmetry. Nat. Photonics, 11, 752-762(2017).
[4] C. M. Bender, S. Boettcher. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett., 80, 5243-5246(1998).
[5] B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, L. Yang. Parity-time-symmetric whispering-gallery microcavities. Nat. Phys., 10, 394-398(2014).
[6] J. Doppler, A. A. Mailybaev, J. Böhm, U. Kuhl, A. Girschik, F. Libisch, T. J. Milburn, P. Rabl, N. Moiseyev, S. Rotter. Dynamically encircling an exceptional point for asymmetric mode switching. Nature, 537, 76-79(2016).
[7] S. Ozdemir, S. Rotter, F. Nori, L. Yang. Parity-time symmetry and exceptional points in photonics. Nat. Mater., 18, 783-798(2019).
[8] L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, M. Xiao. Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators. Nat. Photonics, 8, 524-529(2014).
[9] H. F. Jones. The energy spectrum of complex periodic potentials of the Kronig-Penney type. Phys. Lett. A, 262, 242-244(1999).
[10] X.-G. Zhang, K. Varga, S. T. Pantelides. Generalized Bloch theorem for complex periodic potentials: a powerful application to quantum transport calculations. Phys. Rev. B, 76, 035108(2007).
[11] Z. Ahmed. Energy band structure due to a complex, periodic, PT-invariant potential. Phys. Lett. A, 286, 231-235(2001).
[12] K. G. Makris, R. El-Ganainy, D. N. Christodoulides, Z. H. Musslimani. Beam dynamics in PT symmetric optical lattices. Phys. Rev. Lett., 100, 103904(2008).
[13] A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, U. Peschel. Parity-time synthetic photonic lattices. Nature, 488, 167-171(2012).
[14] C. Keller, M. K. Oberthaler, R. Abfalterer, S. Bernet, J. Schmiedmayer, A. Zeilinger. Tailored complex potentials and Friedel’s law in atom optics. Phys. Rev. Lett., 79, 3327-3330(1997).
[15] B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S.-L. Chua, J. D. Joannopoulos, M. Soljačić. Spawning rings of exceptional points out of Dirac cones. Nature, 525, 354-358(2015).
[16] S. Yao, Z. Wang. Edge states and topological invariants of non-Hermitian systems. Phys. Rev. Lett., 121, 086803(2018).
[17] H. Zhou, C. Peng, Y. Yoon, C. W. Hsu, K. A. Nelson, L. Fu, J. D. Joannopoulos, M. Soljačić, B. Zhen. Observation of bulk Fermi arc and polarization half charge from paired exceptional points. Science, 359, 1009-1012(2018).
[18] A. Ghatak, M. Brandenbourger, J. V. Wezel, C. Coulais. Observation of non-Hermitian topology and its bulk-edge correspondence in an active mechanical metamaterial. Proc. Natl. Acad. Sci. USA, 117, 29561-29568(2020).
[19] Z. H. Musslimani, K. G. Makris, R. El-Ganainy, D. N. Christodoulides. Optical solitons in PT periodic potentials. Phys. Rev. Lett., 100, 030402(2008).
[20] S. Assawaworrarit, X. Yu, S. Fan. Robust wireless power transfer using a nonlinear parity–time-symmetric circuit. Nature, 546, 387-390(2017).
[21] H. F. Talbot. Facts relating to optical science. Philos. Mag. J. Sci., 9, 401-407(1836).
[22] L. Rayleigh. On copying diffraction gratings and on some phenomenon connected therewith. Philos. Mag., 11, 196-205(1881).
[23] H. Ramezani, D. N. Christodoulides, V. Kovanis, I. Vitebskiy, T. Kottos. PT-symmetric Talbot effects. Phys. Rev. Lett., 109, 033902(2012).
[24] S. Wang, B. Wang, P. Lu. PT-symmetric Talbot effect in a temporal mesh lattice. Phys. Rev. A, 98, 043832(2018).
[25] S. Longhi. Talbot self-imaging in PT-symmetric complex crystals. Phys. Rev. A, 90, 043827(2014).
[26] Y. Zhang, J. Wen, S. N. Zhu, M. Xiao. Nonlinear Talbot effect. Phys. Rev. Lett., 104, 183901(2010).
[27] J. Wen, Y. Zhang, M. Xiao. The Talbot effect: recent advances in classical optics, nonlinear optics, and quantum optics. Adv. Opt. Photon., 5, 83-130(2013).
[28] Z. Zhang, L. Yang, J. Feng, J. Sheng, Y. Q. Zhang, Y. P. Zhang, M. Xiao. Parity-time-symmetric optical lattice with alternating gain and loss atomic configurations. Laser Photon. Rev., 12, 1800155(2018).
[29] Z. Zhang, Y. Zhang, J. Sheng, L. Yang, M.-A. Miri, D. N. Christodoulides, B. He, Y. Zhang, M. Xiao. Observation of parity-time symmetry in optically induced atomic lattices. Phys. Rev. Lett., 117, 123601(2016).
[30] K. Hornberger, S. Gerlich, P. Haslinger, S. Nimmrichter, M. Arndt. Colloquium: quantum interference of clusters and molecules. Rev. Mod. Phys., 84, 157-173(2012).
[31] Z. Zhang, X. Liu, D. Zhang, J. Sheng, Y. Zhang, Y. Zhang, M. Xiao. Observation of electromagnetically induced Talbot effect in an atomic system. Phys. Rev. A, 97, 013603(2018).
[32] J. M. Wen, S. Du, H. Chen, M. Xiao. Electromagnetically induced Talbot effect. Appl. Phys. Lett., 98, 081108(2011).
[33] M. S. Chapman, C. R. Ekstrom, T. D. Hammond, J. Schmiedmayer, B. E. Tannian, S. Wehinger, D. E. Pritchard. Near-field imaging of atom diffraction gratings: the atomic Talbot effect. Phys. Rev. A, 51, R14-R17(1995).
[34] J. Gea-Banacloche, Y.-Q. Li, S.-Z. Jin, M. Xiao. Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment. Phys. Rev. A, 51, 576-584(1995).
[35] M. Xiao, Y. Li, S. Jin, J. Gea-Banacloche. Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms. Phys. Rev. Lett., 74, 666-669(1995).
[36] Z. Zhang, F. Li, G. Malpuech, Y. Q. Zhang, O. Bleu, S. Koniakhin, C. Li, Y. P. Zhang, M. Xiao, D. D. Solnyshkov. Particle like behavior of topological defects in linear wave packets in photonic graphene. Phys. Rev. Lett., 122, 233905(2019).
[37] Z. Zhang, S. Liang, F. Li, S. Ning, Y. Li, G. Malpuech, Y. Zhang, M. Xiao, D. Solnyshkov. Spin–orbit coupling in photonic graphene. Optica, 7, 455-462(2020).
[38] O. Bleu, D. D. Solnyshkov, G. Malpuech. Quantum valley Hall effect and perfect valley filter based on photonic analogs of transitional metal dichalcogenides. Phys. Rev. B, 95, 235431(2017).
[39] C. Guo, X. Yin, L. Zhu, Z. Hong. Analytical expression for phase distribution of a hexagonal array at fractional Talbot planes. Opt. Lett., 32, 2079-2081(2007).
[40] J. Belin, T. Tyc. Talbot effect for gratings with diagonal symmetry. J. Opt., 20, 025604(2018).
[41] Z. Zhang, R. Wang, Y. Q. Zhang, Y. V. Kartashov, F. Li, H. Zhong, H. Guan, K. Gao, F. Li, Y. Zhang, M. Xiao. Observation of edge solitons in photonic graphene. Nat. Commun., 11, 1902(2020).
Get Citation
Copy Citation Text
Zhaoyang Zhang, Yuan Feng, Shaohuan Ning, G. Malpuech, D. D. Solnyshkov, Zhongfeng Xu, Yanpeng Zhang, Min Xiao, "Imaging lattice switching with Talbot effect in reconfigurable non-Hermitian photonic graphene," Photonics Res. 10, 958 (2022)
Category: Nonlinear Optics
Received: Nov. 3, 2021
Accepted: Feb. 17, 2022
Published Online: Mar. 16, 2022
The Author Email: Zhaoyang Zhang (zhyzhang@xjtu.edu.cn), D. D. Solnyshkov (dmitry.solnyshkov@uca.fr)