Optoelectronics Letters, Volume. 21, Issue 7, 441(2025)

Clustering-based temporal deep neural network denoising method for event-based sensors

Jianing LI, Jiangtao XU, and Jiandong GAO
References(19)

[1] [1] CHEN G Z, LIU S, XU J T. Memory-boosting RNN with dynamic graph for event-based action recognition[J]. Optoelectronics letters, 2023, 19(10): 629-634.

[2] [2] LIU S, CHENG H H, HUANG S Y, et al. Fast event-inpainting based on lightweight generative adversarial nets[J]. Optoelectronics letters, 2021, 17(8): 507-512.

[3] [3] STROMATIAS E, SOTO M, SERRANO G M T, et al. An event-based classifier for dynamic vision sensor and synthetic data[J]. Applied sciences, 2020, 10(1): 2024-2042.

[4] [4] CZECH D, ORCHARD G. Evaluating noise filtering for event-based asynchronous change detection image sensors[C]//2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics, June 26-29, 2016, Singapore. New York: IEEE, 2016: 19-24.

[5] [5] LV Y, LIU Z, ZHOU L, et al. Denoising algorithm based on event camera[C]//6th Conference on Frontiers in Optical Imaging and Technology: Novel Detector Technologies, October 22-24, 2023, Nanjing, China. Washington: SPIE, 2024, 13154: 59-65.

[6] [6] FENG Y, LV H, LIU H, et al. Event density based denoising method for dynamic vision sensor[J]. Applied sciences, 2020, 10(6): 2024.

[7] [7] TANG S, LV H, ZHAO Y, et al. Denoising method based on salient region recognition for the spatiotemporal event stream[J]. Sensors, 2023, 23(15): 6655.

[8] [8] DUAN P, WANG Z W, ZHOU X, et al. EventZoom: learning to denoise and super resolve neuromorphic events[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 19-25, 2021, California, USA. New York: IEEE, 2021: 12824-12833.

[9] [9] FANG H, WU J, LI L, et al. AEDNet: asynchronous event denoising with spatial-temporal correlation among irregular data[C]//Proceedings of the 30th ACM International Conference on Multimedia, October 10-14, 2022, Lisbon, Portugal. New York: ACM, 2022: 1427-1435.

[10] [10] GUO S, DELBRUCK T. Low cost and latency event camera background activity denoising[J]. IEEE transactions on pattern analysis and machine intelligence, 2023, 45(1): 785-795.

[11] [11] YAO Y H, PAN Y G, LI J, et al. Sanitized clustering against confounding bias[J]. Machine learning, 2024, 113(6): 3711-3730.

[12] [12] HUO C, BAI H F, YIN Z B, et al. Naive-LSTM based services awareness of edge computing elastic optical networks[J]. Optoelectronics letters, 2023, 19(5): 279-283.

[13] [13] KHODAMORADI A, KASTNER R. O(N)-space spatiotemporal filter for reducing noise in neuromorphic vision sensors[J]. IEEE transactions on emerging topics in computing, 2021, 9(1): 15-23.

[14] [14] ROY P, ZHONG G Q, CHERIET M. Tandem hidden Markov models using deep belief networks for offline handwriting recognition[J]. Frontiers of information technology & electronic engineering, 2017, 18(7): 978-988.

[15] [15] LEUNG W K, LIU X, MENG H. CNN-RNN-CTC based end-to-end mispronunciation detection and diagnosis[C]//2019 IEEE International Conference on Acoustics, Speech and Signal Processing, May 12-17, 2019, Brighton, UK. New York: IEEE, 2019: 8132-8136.

[16] [16] EL SHAIR Z, RAWASHDEH S A. High-temporal-resolution object detection and tracking using images and events[J]. Journal of imaging, 2022, 8(8): 210.

[17] [17] MIAO S, CHEN G, NING X, et al. Neuromorphic vision datasets for pedestrian detection, action recognition, and fall detection[J]. Frontiers in neurorobotics, 2019, 13: 38.

[18] [18] ZHANG Z, SUO J, DAI Q H. Denoising of event-based sensors with deep neural networks[C]//Optoelectronic Imaging and Multimedia Technology VIII, October 10-12, 2021, Nantong, China. Washington: SPIE, 2021, 11897: 203-209.

[19] [19] LIU H, BRANDLI C, LI C, et al. Design of a spatiotemporal correlation filter for event-based sensors[C]//2015 IEEE International Symposium on Circuits and Systems, May 24-27, 2015, Lisbon, Portugal. New York: IEEE, 2015: 722-725.

Tools

Get Citation

Copy Citation Text

LI Jianing, XU Jiangtao, GAO Jiandong. Clustering-based temporal deep neural network denoising method for event-based sensors[J]. Optoelectronics Letters, 2025, 21(7): 441

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Received: Apr. 11, 2024

Accepted: Jul. 24, 2025

Published Online: Jul. 24, 2025

The Author Email:

DOI:10.1007/s11801-025-4091-z

Topics