Chinese Journal of Lasers, Volume. 50, Issue 1, 0113013(2023)

Hybridized Phonon-Plasmon Polariton Waveguide Modes in Stacked α-MoO3/Graphene van der Waals Heterostructure

Fengsheng Sun1,3,4, Zebo Zheng1, Wuchao Huang1, Ningsheng Xu1,2, Ximiao Wang1,3,4, Tianwu Wang3, Huanjun Chen1、*, and Shaozhi Deng1、**
Author Affiliations
  • 1State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
  • 2Frontier Institute of Chip and System, Fudan University, Shanghai 200433, China
  • 3GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, Guangzhou 510700, Guangdong, China
  • 4Shenzhen JL Computational Science and Applied Research Institute, Shenzhen 518131, Guangdong, China
  • show less
    References(69)

    [1] Huang K. Lattice vibrations and optical waves in ionic crystals[J]. Nature, 167, 779-780(1951).

    [2] Xia F N, Wang H, Xiao D et al. Two-dimensional material nanophotonics[J]. Nature Photonics, 8, 899-907(2014).

    [3] Basov D N, Fogler M M, García de Abajo F J. Polaritons in van der Waals materials[J]. Science, 354, aag1992(2016).

    [4] Low T, Chaves A, Caldwell J D et al. Polaritons in layered two-dimensional materials[J]. Nature Materials, 16, 182-194(2017).

    [5] Menabde S G, Heiden J T, Cox J D et al. Image polaritons in van der Waals crystals[J]. Nanophotonics, 11, 2433-2452(2022).

    [6] Wunsch B, Stauber T, Sols F et al. Dynamical polarization of graphene at finite doping[J]. New Journal of Physics, 8, 318(2006).

    [7] Chen J N, Badioli M, Alonso-González P et al. Optical nano-imaging of gate-tunable graphene plasmons[J]. Nature, 487, 77-81(2012).

    [8] Fei Z, Rodin A S, Andreev G O et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging[J]. Nature, 487, 82-85(2012).

    [9] Gerber J A, Berweger S, O’Callahan B T et al. Phase-resolved surface plasmon interferometry of graphene[J]. Physical Review Letters, 113, 055502(2014).

    [10] Fei Z, Andreev G O, Bao W Z et al. Infrared nanoscopy of Dirac plasmons at the graphene-SiO2 interface[J]. Nano Letters, 11, 4701-4705(2011).

    [11] Zheng Z B, Li J T, Ma T et al. Tailoring of electromagnetic field localizations by two-dimensional graphene nanostructures[J]. Light: Science & Applications, 6, e17057(2017).

    [12] Low T, Roldán R, Wang H et al. Plasmons and screening in monolayer and multilayer black phosphorus[J]. Physical Review Letters, 113, 106802(2014).

    [13] van Veen E, Nemilentsau A, Kumar A et al. Tuning two-dimensional hyperbolic plasmons in black phosphorus[J]. Physical Review Applied, 12, 014011(2019).

    [14] Politano A, Silkin V M, Nechaev I A et al. Interplay of surface and Dirac plasmons in topological insulators: the case of Bi2Se3[J]. Physical Review Letters, 115, 216802(2015).

    [15] Kogar A, Vig S, Thaler A et al. Surface collective modes in the topological insulators Bi2Se3 and Bi0.5Sb1.5Te3-xSex[J]. Physical Review Letters, 115, 257402(2015).

    [16] Wang C, Sun Y Y, Huang S Y et al. Tunable plasmons in large-area WTe2 thin films[J]. Physical Review Applied, 15, 014010(2021).

    [17] Politano A, Chiarello G, Ghosh B et al. 3D Dirac plasmons in the type-II Dirac semimetal PtTe2[J]. Physical Review Letters, 121, 086804(2018).

    [18] Caldwell J D, Kretinin A V, Chen Y G et al. Sub-diffractional, volume-confined polaritons in the natural hyperbolic material: hexagonal boron nitride[J]. Nature Communication, 5, 5221(2014).

    [19] Li P N, Lewin M, Kretinin A V et al. Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing[J]. Nature Communications, 6, 7507(2015).

    [20] Dai S, Fei Z, Ma Q et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride[J]. Science, 343, 1125-1129(2014).

    [21] Li P, Dolado I, Alfaro-Mozaz F J et al. Optical nanoimaging of hyperbolic surface polaritons at the edges of van der Waals materials[J]. Nano Letters, 17, 228-235(2017).

    [22] Duan J, Chen R, Li J et al. Launching phonon polaritons by natural boron nitride wrinkles with modifiable dispersion by dielectric environments[J]. Advanced Materials, 29, 1702494(2017).

    [23] Dubrovkin A M, Qiang B, Krishnamoorthy H N S et al. Ultra-confined surface phonon polaritons in molecular layers of van der Waals dielectrics[J]. Nature Communications, 9, 1762(2018).

    [24] Dai S Y, Quan J M, Hu G W et al. Hyperbolic phonon polaritons in suspended hexagonal boron nitride[J]. Nano Letters, 19, 1009-1014(2019).

    [25] Fali A, White S T, Folland T G et al. Refractive index-based control of hyperbolic phonon-polariton propagation[J]. Nano Letters, 19, 7725-7734(2019).

    [26] Giles A J, Dai S Y, Vurgaftman I et al. Ultralow-loss polaritons in isotopically pure boron nitride[J]. Nature Materials, 17, 134-139(2018).

    [27] Zheng Z B, Chen J N, Wang Y et al. Highly confined and tunable hyperbolic phonon polaritons in van der Waals semiconducting transition metal oxides[J]. Advanced Materials, 30, 1705318(2018).

    [28] Ma W L, Alonso-González P, Li S J et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal[J]. Nature, 562, 557-562(2018).

    [29] Zheng Z B, Xu N S, Oscurato S L et al. A mid-infrared biaxial hyperbolic van der Waals crystal[J]. Science Advances, 5, eaav8690(2019).

    [30] Álvarez-Pérez G, Folland T G, Errea I et al. Infrared permittivity of the biaxial van der Waals semiconductor α-MoO3 from near- and far-field correlative studies[J]. Advanced Materials, 32, 1908176(2020).

    [31] Sun F S, Huang W C, Zheng Z B et al. Polariton waveguide modes in two-dimensional van der Waals crystals: an analytical model and correlative nano-imaging[J]. Nanoscale, 13, 4845-4854(2021).

    [32] de Oliveira T V A G, Nörenberg T, Álvarez-Pérez G et al. Nanoscale-confined terahertz polaritons in a van der Waals crystal[J]. Advanced Materials, 33, 2005777(2021).

    [33] Wu Y J, Ou Q D, Yin Y F et al. Chemical switching of low-loss phonon polaritons in α-MoO3 by hydrogen intercalation[J]. Nature Communications, 11, 2646(2020).

    [34] Dai Z G, Hu G W, Si G Y et al. Edge-oriented and steerable hyperbolic polaritons in anisotropic van der Waals nanocavities[J]. Nature Communications, 11, 6086(2020).

    [35] Huang W C, Sun F S, Zheng Z B et al. Van der Waals phonon polariton microstructures for configurable infrared electromagnetic field localizations[J]. Advanced Science, 8, 2004872(2021).

    [36] Taboada-Gutiérrez J, Álvarez-Pérez G, Duan J H et al. Broad spectral tuning of ultra-low-loss polaritons in a van der Waals crystal by intercalation[J]. Nature Materials, 19, 964-968(2020).

    [37] Fei Z, Scott M E, Gosztola D J et al. Nano-optical imaging of WSe2 waveguide modes revealing light-exciton interactions[J]. Physical Review B, 94, 081402(2016).

    [38] Chen Y J, Cain J D, Stanev T K et al. Valley-polarized exciton-polaritons in a monolayer semiconductor[J]. Nature Photonics, 11, 431-435(2017).

    [39] Hu F, Luan Y, Scott M E et al. Imaging exciton-polariton transport in MoSe2 waveguides[J]. Nature Photonics, 11, 356-360(2017).

    [40] Hu D B, Yang X X, Li C et al. Probing optical anisotropy of nanometer-thin van der Waals microcrystals by near-field imaging[J]. Nature Communications, 8, 1471(2017).

    [41] Dunmore F J, Liu D Z, Drew H D et al. Observation of below-gap plasmon excitations in superconducting YBa2Cu3O7 films[J]. Physical Review B, 52, R731-R734(1995).

    [42] Stinson H T, Wu J S, Jiang B Y et al. Infrared nanospectroscopy and imaging of collective superfluid excitations in anisotropic superconductors[J]. Physical Review B, 90, 014502(2014).

    [43] Tran K, Moody G, Wu F C et al. Evidence for moiré excitons in van der Waals heterostructures[J]. Nature, 567, 71-75(2019).

    [44] Carr S, Massatt D, Fang S A et al. Twistronics: manipulating the electronic properties of two-dimensional layered structures through their twist angle[J]. Physical Review B, 95, 075420(2017).

    [45] Alnasser K, Kamau S, Hurley N et al. Resonance modes in moiré photonic patterns for twistoptics[J]. OSA Continuum, 4, 1339-1347(2021).

    [46] Cao Y, Fatemi V, Demir A et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices[J]. Nature, 556, 80-84(2018).

    [47] Jiang L L, Shi Z W, Zeng B et al. Soliton-dependent plasmon reflection at bilayer graphene domain walls[J]. Nature Materials, 15, 840-844(2016).

    [48] Hu F, Das S R, Luan Y et al. Real-space imaging of the tailored plasmons in twisted bilayer graphene[J]. Physical Review Letters, 119, 247402(2017).

    [49] Sunku S S, Ni G X, Jiang B Y et al. Photonic crystals for nano-light in moiré graphene superlattices[J]. Science, 362, 1153-1156(2018).

    [50] Zheng J L, Dai Z G, Hu G W et al. Twisted van der Waals materials for photonics[J]. Chinese Optics, 14, 812-822(2021).

    [51] Dai S, Ma Q, Liu M K et al. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial[J]. Nature Nanotechnology, 10, 682-686(2015).

    [52] Woessner A, Lundeberg M B, Gao Y D et al. Highly confined low-loss plasmons in graphene-boron nitride heterostructures[J]. Nature Materials, 14, 421-425(2015).

    [53] Kumar A, Low T, Fung K H et al. Tunable light-matter interaction and the role of hyperbolicity in graphene-hBN system[J]. Nano Letters, 15, 3172-3180(2015).

    [54] Yang X X, Zhai F, Hu H et al. Far-field spectroscopy and near-field optical imaging of coupled plasmon-phonon polaritons in 2D van der Waals heterostructures[J]. Advanced Materials, 28, 2931-2938(2016).

    [55] Qu S, Liu H X, Dong L et al. Graphene-hexagonal boron nitride heterostructure as a tunable phonon-plasmon coupling system[J]. Crystals, 7, 49(2017).

    [56] Duan J H, Capote-Robayna N, Taboada-Gutiérrez J et al. Twisted nano-optics: manipulating light at the nanoscale with twisted phonon polaritonic slabs[J]. Nano Letters, 20, 5323-5329(2020).

    [57] Zheng Z B, Sun F S, Huang W C et al. Phonon polaritons in twisted double-layers of hyperbolic van der Waals crystals[J]. Nano Letters, 20, 5301-5308(2020).

    [58] Hu G W, Ou Q D, Si G Y et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers[J]. Nature, 582, 209-213(2020).

    [59] Chen M Y, Lin X, Dinh T H et al. Configurable phonon polaritons in twisted α-MoO3[J]. Nature Materials, 19, 1307-1311(2020).

    [61] Zhang Q, Ou Q D, Hu G W et al. Hybridized hyperbolic surface phonon polaritons at α-MoO3 and polar dielectric interfaces[J]. Nano Letters, 21, 3112-3119(2021).

    [62] Zeng Y L, Ou Q D, Liu L et al. Tailoring topological transitions of anisotropic polaritons by interface engineering in biaxial crystals[J]. Nano Letters, 22, 4260-4268(2022).

    [63] Hu H, Chen N, Teng H C et al. Doping-driven topological polaritons in graphene/α-MoO3 heterostructures[J]. Nature Nanotechnology, 17, 940-946(2022).

    [64] Li P N, Dolado I, Alfaro-Mozaz F J et al. Infrared hyperbolic metasurface based on nanostructured van der Waals materials[J]. Science, 359, 892-896(2018).

    [65] Hillenbrand R, Taubner T, Keilmann F. Phonon-enhanced light-matter interaction at the nanometre scale[J]. Nature, 418, 159-162(2002).

    [66] Hillenbrand R, Keilmann F. Material-specific mapping of metal/semiconductor/dielectric nanosystems at 10 nm resolution by backscattering near-field optical microscopy[J]. Applied Physics Letters, 80, 25-27(2002).

    [67] Gao W L, Shu J, Qiu C Y et al. Excitation of plasmonic waves in graphene by guided-mode resonances[J]. ACS Nano, 6, 7806-7813(2012).

    [68] Sun F. Theoretical and experimental studies on optical propagation characteristics of the polariton waveguide modes in two-dimensional materials[D], 70-89(2021).

    [69] Wang Y, Du X, Wang J M et al. Growth of large-scale, large-size, few-layered α-MoO3 on SiO2 and its photoresponse mechanism[J]. ACS Applied Materials & Interfaces, 9, 5543-5549(2017).

    Tools

    Get Citation

    Copy Citation Text

    Fengsheng Sun, Zebo Zheng, Wuchao Huang, Ningsheng Xu, Ximiao Wang, Tianwu Wang, Huanjun Chen, Shaozhi Deng. Hybridized Phonon-Plasmon Polariton Waveguide Modes in Stacked α-MoO3/Graphene van der Waals Heterostructure[J]. Chinese Journal of Lasers, 2023, 50(1): 0113013

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: micro and nano optics

    Received: Sep. 21, 2022

    Accepted: Nov. 9, 2022

    Published Online: Jan. 6, 2023

    The Author Email: Chen Huanjun (chenhj8@mail.sysu.edu.cn), Deng Shaozhi (stsdsz@mail.sysu.edu.cn)

    DOI:10.3788/CJL221259

    Topics