Chinese Journal of Lasers, Volume. 50, Issue 1, 0113019(2023)
Chemical Vapor Transport Grown Tellurium Nanoflakes for Infrared Pulse Generation
[1] Wang C, Liu J, Zhang H. Ultrafast pulse lasers based on two-dimensinal nanomaterials[J]. Acta Physica Sinica, 68, 188101(2019).
[2] Dong Z K, Song Y R. Research progress of mode-locked fiber lasers based on saturable absorbers[J]. Chinese Journal of Lasers, 48, 0501006(2021).
[3] Gao Z Y, Zhu J F, Gong S et al. Dual-wavelength passively Q-switched Yb∶GdYSiO5 laser based on WS2 saturable absorber mirror[J]. Acta Photonica Sinica, 47, 1014002(2018).
[4] Wang Q, Zhong Y G, Zhao L Y et al. Lasers based on two-dimensional layered materials[J]. Chinese Journal of Lasers, 47, 0701008(2020).
[5] Li X H, An M Q, Li G et al. MOF-derived porous dodecahedron rGO-Co3O4 for robust pulse generation[J]. Advanced Materials Interfaces, 9, 2101933(2022).
[6] Li X H, Guo Y X, Ren Y J et al. Narrow-bandgap materials for optoelectronics applications[J]. Frontiers of Physics, 17, 13304(2022).
[7] Wang Y M, Chen Y X, Li X H et al. Optical-intensity modulator with InSb nanosheets[J]. Applied Materials Today, 21, 100852(2020).
[8] Zhang C X, Liu J, Gao Y et al. Porous nickel oxide micron polyhedral particles for high-performance ultrafast photonics[J]. Optics & Laser Technology, 146, 107546(2022).
[9] Zhang D, Zhang C X, Li X H et al. Layered iron pyrite for ultrafast photonics application[J]. Nanophotonics, 9, 2515-2522(2020).
[10] Bao Q L, Zhang H, Wang Y et al. Atomic layer graphene as saturable absorber for ultrafast pulsed lasers[J]. Advanced Functional Materials, 19, 3077-3083(2009).
[11] Loiko P A, Serres J M, Mateos X et al. Passive Q-switching of Yb bulk lasers by a graphene saturable absorber[J]. Applied Physics B, 122, 105(2016).
[12] Jin Y, Du L, Jiang G B et al. All-optical tunable Q-switched fiber laser based on bismuth telluride nanosheets[J]. Chinese Journal of Lasers, 44, 0703014(2017).
[13] Wang T, Yu Q, Guo K et al. Sb2Te3 topological insulator for 52 nm wideband tunable Yb-doped passively Q-switched fiber laser[J]. Frontiers of Information Technology & Electronic Engineering, 22, 287-295(2021).
[14] Xu L, Xia H P. Multi-metal sulfide for absorbing near infrared light[J]. Chinese Journal of Lasers, 40, 0606001(2013).
[15] Yang M H, Chang J H, Shi S H et al. Preparation and study on the ultrafast characteristics of a new type of molybdenum disulfide saturable absorber[J]. Chinese Journal of Lasers, 45, 1001009(2018).
[16] Ling W J, Sun R, Chen C et al. Passively Q-switched mode-locked Tm∶LuAG laser with reflective MoS2 saturable absorber[J]. Chinese Journal of Lasers, 46, 0808002(2019).
[17] Deng H Q, Fan C, Guo K et al. Research of fiber pulse laser generation with oblique grown PbSe nanosheets saturable absorber(invited)[J]. Acta Photonica Sinica, 50, 1014002(2021).
[18] Yu Q, Guo K, Dai Y P et al. Black phosphorus for near-infrared ultrafast lasers in the spatial/temporal domain[J]. Journal of Physics. Condensed Matter, 33, 503001(2021).
[19] Yu Q, Chen C, Guo K et al. Deterministic transfer of large-scale β-phase arsenic on fiber end cap for near-infrared ultrafast pulse generation[J]. Frontiers in Materials, 8, 721587(2021).
[20] Yu J W, Wang X H, Feng J C et al. Antimonene nanoflakes as a photoacoustic imaging contrast agent for tumor in vivo imaging[J]. Chinese Journal of Lasers, 47, 0207033(2020).
[21] Lei T, Li J M, Lu S et al. Electronic states driven by the crystal field in two-dimensional materials: the case of antimonene[J]. Physical Review B, 105, 115404(2022).
[22] Zhao X X, Shi J W, Yin Q et al. Controllable synthesis of high-quality two-dimensional tellurium by a facile chemical vapor transport strategy[J]. iScience, 25, 103594(2021).
[23] Wang Q S, Safdar M, Xu K et al. Van der waals epitaxy and photoresponse of hexagonal tellurium nanoplates on flexible mica sheets[J]. ACS Nano, 8, 7497-7505(2014).
[24] Wang Y X, Qiu G, Wang R X et al. Field-effect transistors made from solution-grown two-dimensional tellurene[J]. Nature Electronics, 1, 228-236(2018).
[25] Guo J, Zhao J L, Huang D Z et al. Two-dimensional tellurium-polymer membrane for ultrafast photonics[J]. Nanoscale, 11, 6235-6242(2019).
[26] Liu G W, Yuan J J, Wu T G et al. Ultrathin 2D nonlayered tellurene nanosheets as saturable absorber for picosecond pulse generation in all-fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 27, 0900106(2021).
[27] Calavalle F, Suárez-Rodríguez M, Martín-García B et al. Gate-tuneable and chirality-dependent charge-to-spin conversion in tellurium nanowires[J]. Nature Materials, 21, 526-532(2022).
[28] Gong T. Study on the growth mechanism and the properties of two-dimensional symmetric tellurene[D], 1-74(2021).
[29] Chen J, Wang J, Yu Q et al. Sub-band gap absorption and optical nonlinear response of MnPSe3 nanosheets for pulse generation in the L-band[J]. ACS Applied Materials & Interfaces, 13, 13524-13533(2021).
[30] Yu Q, Wang S, Zhang Y et al. Femtosecond ultrafast pulse generation with high-quality 2H-TaS2 nanosheets via top-down empirical approach[J]. Nanoscale, 13, 20471-20480(2021).
[31] Akbari R, Zhao H, Fedorova K A et al. Quantum-dot saturable absorber and Kerr-lens mode-locked Yb∶KGW laser with >450 kW of peak power[J]. Optics Letters, 41, 3771-3774(2016).
Get Citation
Copy Citation Text
Xiuyang Pang, Xinxin Zhao, Qiang Yu, Haiqin Deng, Fangqi Liu, Yan Zhang, Bowang Shu, Tianhao Xian, Sicong Zhu, Jian Wu, Yifeng Hou, Kai Zhang, Zongfu Jiang. Chemical Vapor Transport Grown Tellurium Nanoflakes for Infrared Pulse Generation[J]. Chinese Journal of Lasers, 2023, 50(1): 0113019
Category: micro and nano optics
Received: Apr. 6, 2022
Accepted: Jun. 7, 2022
Published Online: Jan. 6, 2023
The Author Email: Yu Qiang (qyu2015@sinano.ac.cn), Zhang Kai (kzhang2015@sinano.ac.cn)