Transactions of Atmospheric Sciences, Volume. 48, Issue 4, 603(2025)

Extended-range intelligent forecasting of regional heat wave events in Hunan Province during midsummer (July-August) using convolutional neural networks

ZHANG Yi1, TAN Guirong1, ZHAO Hui2,3, ZENG Lingling1, HUANG Chao2, and FEI Qiming1
Author Affiliations
  • 1State Key Laboratory of Climate System Prediction and Risk Management (CPRM)/Key Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, China
  • 2Hunan Provincial Climate Center, Changsha 410119, China
  • 3Dongting Lake National Climate Observatory, Yueyang 414000, China
  • show less
    References(21)

    [1] [1] Bauer P, Thorpe A, Brunet G, 2015. The quiet revolution of numerical weather prediction[J]. Nature, 525(7567): 47-55. DOI: 10.1038/nature14956.

    [4] [4] Glahn H R, Lowry D A, 1972. The use of model output statistics (MOS) in objective weather forecasting[J]. J Appl Meteor, 11(8): 1203-1211. DOI: 10.1175/1520-0450(1972)0112.0.co;2.

    [5] [5] Han L, Sun J Z, Zhang W, 2020. Convolutional neural network for convective storm nowcasting using 3-D Doppler weather radar data[J]. IEEE Trans Geosci Remote Sens, 58(2): 1487-1495. DOI: 10.1109/TGRS.2019.2948070.

    [6] [6] Hsu P C, Li T, You L J, et al., 2015. A spatial-temporal projection model for 10—30 day rainfall forecast in South China[J]. Climate Dyn, 44(5): 1227-1244. DOI: 10.1007/s00382-014-2215-4.

    [8] [8] Jones C, Carvalho L M V, Wayne Higgins R, et al., 2004. A statistical forecast model of tropical intraseasonal convective anomalies[J]. J Climate, 17(11): 2078-2095. DOI: 10.1175/1520-0442(2004)0172.0.co;2.

    [9] [9] Klein W H, Lewis B M, Enger I, 1959. Objective prediction of five-day mean temperatures during winter[J]. J Meteor, 16(6): 672-682. DOI: 10.1175/1520-0469(1959)0162.0.co;2.

    [10] [10] Lagerquist R, McGovern A, Gagne D J, 2019. Deep learning for spatially explicit prediction of synoptic-scale fronts[J]. Wea Forecasting, 34(4): 1137-1160. DOI: 10.1175/waf-d-18-0183.1.

    [12] [12] Lebedev V, Ivashkin V, Rudenko I, et al., 2019. Precipitation nowcasting with satellite imagery[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Anchorage AK USA: ACM: 2680-2688. DOI: 10.1145/3292500.3330762.

    [14] [14] Marzban C, 2003. Neural networks for postprocessing model output: ARPS[J]. Mon Wea Rev, 131(6): 1103-1111. DOI: 10.1175/1520-0493(2003)1312.0.co;2.

    [15] [15] Marzban C, Sandgathe S, Kalnay E, 2006. MOS, perfect prog, and reanalysis[J]. Mon Wea Rev, 134(2): 657-663. DOI: 10.1175/mwr3088.1.

    [16] [16] Peng X D, Che Y Z, Chang J, 2013. A novel approach to improve numerical weather prediction skills by using anomaly integration and historical data[J]. J Geophys Res: Atmos, 118(16): 8814-8826. DOI: 10.1002/jgrd.50682.

    [17] [17] Rasp S, Lerch S, 2018. Neural networks for postprocessing ensemble weather forecasts[J]. Mon Wea Rev, 146(11): 3885-3900. DOI: 10.1175/mwr-d-18-0187.1.

    [18] [18] Sabat N K, Pati U C, Das S K, 2023. ABTCN: an efficient hybrid deep learning approach for atmospheric temperature prediction[J]. Environ Sci Pollut Res Int, 30(60): 125295-125312. DOI: 10.1007/s11356-023-27985-0.

    [19] [19] Shi X J, Chen Z R, Wang H, et al., 2015. Convolutional LSTM network: a machine learning approach for precipitation nowcasting[J]. arXiv: 1506.04214v2. DOI: 10.48550/arXiv1506.04214.

    [20] [20] Shi X J, Gao Z H, Lausen L, et al., 2017. Deep learning for precipitation nowcasting: a benchmark and a new model[J]. arXiv: 1706.03458v2. DOI: 10.48550/1706.03458.

    [21] [21] Tao Y M, Gao X G, Hsu K, et al., 2016. A deep neural network modeling framework to reduce bias in satellite precipitation products[J]. J Hydrometeorol, 17(3): 931-945. DOI: 10.1175/jhm-d-15-0075.1.

    [22] [22] Vannitsem S, Bremnes J B, Demaeyer J, et al., 2021. Statistical postprocessing for weather forecasts: review, challenges, and avenues in a big data world[J]. Bull Amer Meteor Soc, 102(3): E681-E699. DOI: 10.1175/bams-d-19-0308.1.

    [23] [23] Vitart F, Ardilouze C, Bonet A, et al., 2017. The subseasonal to seasonal (S2S) prediction project database[J]. Bull Amer Meteor Soc, 98(1): 163-173. DOI: 10.1175/bams-d-16-0017.1.

    [25] [25] Xia J J, Li H C, Kang Y Y, et al., 2020. Machine learning-based weather support for the 2022 Winter Olympics[J]. Adv Atmos Sci, 37(9): 927-932. DOI: 10.1007/s00376-020-0043-5.

    [26] [26] Xu G N, Lin K H, Li X T, et al., 2022. SAF-Net: a spatio-temporal deep learning method for typhoon intensity prediction[J]. Pattern Recognit Lett, 155: 121-127. DOI: 10.1016/j.patrec.2021.11.012.

    [27] [27] Yang J, Zhu T, Gao M N, et al., 2018. Late-July barrier for subseasonal forecast of summer daily maximum temperature over Yangtze River basin[J]. Geophys Res Lett, 45(22): 12610-12615. DOI: 10.1029/2018GL080963.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Yi, TAN Guirong, ZHAO Hui, ZENG Lingling, HUANG Chao, FEI Qiming. Extended-range intelligent forecasting of regional heat wave events in Hunan Province during midsummer (July-August) using convolutional neural networks[J]. Transactions of Atmospheric Sciences, 2025, 48(4): 603

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 11, 2024

    Accepted: Aug. 21, 2025

    Published Online: Aug. 21, 2025

    The Author Email:

    DOI:10.13878/j.cnki.dqkxxb.20241011004

    Topics