Laser & Optoelectronics Progress, Volume. 56, Issue 4, 041502(2019)

Mask R-CNN Object Detection Method Based on Improved Feature Pyramid

Zhijun Ren, Suzhen Lin*, Dawei Li, Lifang Wang, and Jianhong Zuo
Author Affiliations
  • College of Big Data, North University of China, Taiyuan, Shanxi 030051, China
  • show less
    References(21)

    [5] Dalal N, Triggs B. Histograms of oriented gradients for human detection. [C]∥IEEE Conference on Computer Vision and Pattern Recognition, June 20-25, 2005, San Diego, CA, USA. IEEE: New York, 886-893(2005).

    [6] Felzenszwalb P. McAllester D, Ramanan D. A discriminatively trained, multiscale, deformable part model. [C]∥IEEE Conference on Computer Vision and Pattern Recognition, June 23-28, 2008, Anchorage, AK, USA. New York: IEEE, 1-8(2008).

    [7] Redmon J, Divvala S, Girshick R et al. You only look once: unified, real-time object detection. [C]∥IEEE Conference on Computer Vision and Pattern Recognition, June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE, 779-788(2016).

    [8] Liu W, Anguelov D, Erhan D et al. SSD: single shot multibox detector. [C]∥Leibe B, Matas J, Sebe N, et al. European Conference on Computer Vision, Cham: Springer, 9905, 21-37(2016).

    [9] Redmon J. -04-08)[2018-07-31]. https:∥arxiv., org/abs/1804, 02767(2018).

    [10] Lin T Y, Goyal P, Girshick R et al. Focal loss for dense object detection. [C]∥IEEE International Conference on Computer Vision, October 22-29, 2017, Venice, Italy. New York: IEEE, 2999-3007(2017).

    [11] Girshick R, Donahue J, Darrell T et al. Rich feature hierarchies for accurate object detection and semantic segmentation. [C]∥IEEE Conference on Computer Vision and Pattern Recognition, June 23-28, 2014, Columbus, OH, USA. New York: IEEE, 580-587(2014).

    [13] Girshick R. Fast R-CNN. [C]∥IEEE International Conference on Computer Vision, December 7-13, 2015, Santiago, Chile. New York: IEEE, 1440-1448(2015).

    [16] He K M, Gkioxari G, Dollár P et al. Mask R-CNN. [C]∥2017 IEEE International Conference on Computer Vision, October 22-29, 2017, Venice, Italy. New York: IEEE, 2980-2988(2017).

    [17] Lin T Y, Dollár P, Girshick R et al. Feature pyramid networks for object detection. [C]∥IEEE Conference on Computer Vision and Pattern Recognition, July 21-26, 2017, Honolulu, HI, USA. New York: IEEE, 936-944(2017).

    [18] Lin T Y, Maire M, Belongie S et al. Microsoft coco: common objects in context. [C]∥Fleet D, Pajdla T, Schiele B, et al. European Conference on Computer Vision, Cham: Springer, 8693, 740-755(2014).

    [19] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition. [C]∥IEEE Conference on Computer Vision and Pattern Recognition, June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE, 770-778(2016).

    [20] Dai J F, He K M, Sun J. Instance-aware semantic segmentation via multi-task network cascades. [C]∥IEEE Conference on Computer Vision and Pattern Recognition, June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE, 3150-3158(2016).

    [21] Li Y, Qi H Z, Dai J F et al. Fully convolutional instance-aware semantic segmentation. [C]∥IEEE Conference on Computer Vision and Pattern Recognition, July 21-26, 2017, Honolulu, HI, USA. New York: IEEE, 4438-4446(2017).

    Tools

    Get Citation

    Copy Citation Text

    Zhijun Ren, Suzhen Lin, Dawei Li, Lifang Wang, Jianhong Zuo. Mask R-CNN Object Detection Method Based on Improved Feature Pyramid[J]. Laser & Optoelectronics Progress, 2019, 56(4): 041502

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Aug. 27, 2018

    Accepted: Sep. 4, 2018

    Published Online: Jul. 31, 2019

    The Author Email: Suzhen Lin (lsz@nuc.edu.cn)

    DOI:10.3788/LOP56.041502

    Topics