Journal of Quantum Optics, Volume. 30, Issue 1, 10101(2024)
Reversibility of Weak Measured Quantum Entanglement States
[1] [1] SOLLIER A, BOUYER V, HéBERT P, et al. A novel method for the measurement of the von Neumann spike in detonating high explosives[J]. Journal of Applied Physics, 2016, 119(24):542-546. DOI: 10.1063/1.4955075.
[2] [2] MONROE J T, HALPERN N Y, LEE T, et al. Weak measurement of a superconducting qubit reconciles incompatible opera-tors[J]. Physical Review Letters, 2021, 126:100403. DOI: 10.1103/PhysRevLett.126.100403.
[3] [3] HUANG J. The protection of qudit states by weak measurement[J]. Acta Phys Sin, 2017, 66(1):010301. (in Chinese). DOI: 10.7498/aps.66.010301.
[4] [4] SU X L, HAN D M, WANG N, et al. Advances in entanglement-based remote state preparation (Invited)[J]. Laser & Opto-electronics Progress, 2024, 61(1):0127001. (in Chinese). DOI: 10.3788/LOP232395.
[5] [5] LIU Z F, HUANG S Y, CHEN C, et al. Spatial control of photonic quantum states[J]. Acta Optica Sinica, 2024, 44(10): 1000010. (in Chinese). DOI: 10.3788/AOS1992.
[6] [6] FENG K H, CHEN Y C, ZHOU P. Protecting high-dimensional entanglement from decoherence via quantum weak mea-surement and reversal[J]. Modern Physics Letters A, 2022, 37(19):2250117. DOI: 10.1142/S0217732322501176.
[7] [7] CHEONG Y W, LEE S W. Balance between information gain and reversibility in weak measurement[J]. Physical Review Letters, 2012, 109(15):150402. DOI: 10.1103/PhysRevLett.109.150402.
[8] [8] KIM Y S, CHO Y W, RA Y S, et al. Reversing the weak quantum measurement for a photonic qubit[J]. Optics Express, 2009, 17(14):11978-11985. DOI: 978-1-55752-890-2.
[9] [9] DU S J, PENG Y G, FENG H R, et al. Reversion of weak-measured quantum entanglement state[J]. Chin Phys B, 2020, 29: 074202. DOI: 10.1088/1674-1056/ab8c3e.
[10] [10] GUO G C, ZHANG Y S. Scheme for preparation of the W-state via cavity quantum electrodynamics[J]. Phys Rev A, 2002, 65(5):882-886. DOI: 10.1103/PhysRevA.65.054302.
[11] [11] HILLING J J, SUDBERY A. The geometric measure of multipartite entanglement and the singular values of a hypermatrix[J]. Journal of Mathematical Physics, 2010, 51(7):062312. DOI: 10.1063/1.3451264.
[12] [12] PALACIOSLALOY A, MALLET F, NGUYEN F, et al. Experimental violation of a Bell’s inequality in time with weak measurement[J]. Nature Physics, 2010, 6(6):442-447. DOI: 10.1038/nphys1641.
[13] [13] LI Z, RUAN Y P, CHEN P, et al. Liquid crystal devices for vector vortex beams manipulation and quantum information applications [Invited][J]. Chinese Optics Letters, 2021, 19(11):112601. DOI: 10.3788/col202119.112601.
[14] [14] WANG M J, XIA Y J, LI Y D, et al. Steady-state entanglement and heat current of two-qubit in two heat baths[J]. Chinese Journal of Quantum Electronics, 2021, 38(4):504-516. DOI: 10.1016/j.ijleo.2019.01.108.
[15] [15] PAN A K. Interference experiment, anomalous weak value, and Leggett-Garg test of macrorealism[J]. Phys Rev A, 2020, 102 (3):032206. DOI: 10.1103/PhysRevA.102.032206.
[16] [16] LI Y H, NIE Y Y. Quantum information splitting of an arbitrary three-atom state by using W-class states in cavity QED[J]. Com-munications in Theoretical Physics, 2012, 57(6):995-998. DOI: 10.1088/0253-6102/57/6/10.
[17] [17] LI J J, WANG Z X. Monogamy relations in tripartite quantum system[J]. Chin Phys B, 2010, 19(10):100310. DOI: 10.1088/ 1674-1056/19/10/100310.
[18] [18] MIRANOWICZ A, GRUDKA A. A comparative study of relative entropy of entanglement, concurrence and negativity[J]. J Opt B: Quantum Semiclass Opt, 2004, 6:542-548. DOI: 10.1088/1464-4266/6/12/009.
[19] [19] MIRANOWICZ A, ISHIZAKA S, HORST B, et al. Comparison of the relative entropy of entanglement and negativity[J]. Physical Review A, 2004, 78(5):052308. DOI: 10.1103/PhysRevA.78.052308.
Get Citation
Copy Citation Text
DU Shao-jiang, ZHANG Ying-jie, XIA Yun-jie. Reversibility of Weak Measured Quantum Entanglement States[J]. Journal of Quantum Optics, 2024, 30(1): 10101
Category:
Received: Aug. 8, 2023
Accepted: --
Published Online: Aug. 23, 2024
The Author Email: XIA Yun-jie (yjxia_sd@126.com)