Laser & Optoelectronics Progress, Volume. 61, Issue 4, 0412004(2024)

UAV Highway Guardrail Inspection Based on Improved DeepLabV3+

Yang Wang1, Dudu Guo2、*, Qingqing Wang1, Fei Zhou1, and Ying Qin1
Author Affiliations
  • 1School of Intelligent Manufacturing Modern Industry, Xinjiang University, Urumqi 830017, Xinjiang , China
  • 2School of Traffic and Transportation Engineering, Xinjiang University, Urumqi 830017, Xinjiang , China
  • show less
    Figures & Tables(13)
    DeepLabV3+ network architecture
    Improved DeepLabV3+ network architecture
    Visualization result of feature layers at different scales
    SGE attention network structure
    Sample dataset
    Comparison of attentional mechanisms
    Loss changes of mainstream segmentation network models
    Segmentation effect of mainstream segmentation network models
    • Table 1. Improved MobileNetv2 network structure

      View table

      Table 1. Improved MobileNetv2 network structure

      OperatortcnsOutput size
      Conv2d 3×332123202×32
      Bottleneck116113202×16
      Bottleneck624221602×24
      Bottleneck63232802×32
      Bottleneck66442402×64
      Bottleneck69631402×96
      Bottleneck616031402×160
      Bottleneck632011402×320
    • Table 2. Experimental environment setting

      View table

      Table 2. Experimental environment setting

      NameParameter
      Operating systemWindows 10
      ProcessorAMD Ryzen 9 5950X
      Video cardNVIDIA GeForce RTX 3090Ti
      RAM32 G
      Development languagePython 3.8
      Development environmentPyCharm 2021
      Web frameworkPyTorch 1.7
    • Table 3. Comparison experiment of attentional mechanisms

      View table

      Table 3. Comparison experiment of attentional mechanisms

      Base modelBackbone networkAttention modelmpa /%mIoU /%Speed /(frame·s-1
      DeepLabV3+MobileNetv287.3577.8264.33
      DeepLabV3+MobileNetv2CBAM87.3378.2054.10
      DeepLabV3+MobileNetv2ECA87.3978.4666.65
      DeepLabV3+MobileNetv2Coord87.0678.3962.33
      DeepLabV3+MobileNetv2SGE87.7978.5666.74
      DeepLabV3+Xception84.9676.6133.56
      DeepLabV3+XceptionSGE85.9577.7832.75
    • Table 4. Comparison of ablation experiment results

      View table

      Table 4. Comparison of ablation experiment results

      GroupMobileNetv2Feature fusionSGEDenseASPPmpa /%mIoU /%Speed /(frame·s-1Params /106
      84.9676.6133.5654.71
      87.3577.8264.335.81
      87.3978.2658.985.83
      87.7978.5666.745.81
      87.3178.4562.5011.55
      87.3478.8159.7211.56
      87.8979.2052.5911.57
    • Table 5. Comparison of experimental results of mainstream semantic segmentation models

      View table

      Table 5. Comparison of experimental results of mainstream semantic segmentation models

      NetworkBackbone networkmpa /%mIoU /%Speed /(frame·s-1Training time
      UNetVGG1684.7976.9725.0517 h 54 min
      PSPNetMobileNetv268.9462.5385.168 h 3 min
      DeepLabV3+Xception84.9676.6133.5620 h 17 min
      OursMobileNetv287.8979.2052.5911 h 15 min
    Tools

    Get Citation

    Copy Citation Text

    Yang Wang, Dudu Guo, Qingqing Wang, Fei Zhou, Ying Qin. UAV Highway Guardrail Inspection Based on Improved DeepLabV3+[J]. Laser & Optoelectronics Progress, 2024, 61(4): 0412004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Instrumentation, Measurement and Metrology

    Received: May. 10, 2023

    Accepted: Jun. 27, 2023

    Published Online: Feb. 27, 2024

    The Author Email: Dudu Guo (guodd@xju.edu.cn)

    DOI:10.3788/LOP231270

    CSTR:32186.14.LOP231270

    Topics