Acta Optica Sinica, Volume. 43, Issue 16, 1623015(2023)
Laser Excitation of Coherent Acoustic Vibrations of Metallic Nanoresonators and Their Applications
[1] Maldovan M. Sound and heat revolutions in phononics[J]. Nature, 503, 209-217(2013).
[2] Bunch J S, van der Zande A M, Verbridge S S et al. Electromechanical resonators from graphene sheets[J]. Science, 315, 490-493(2007).
[3] Lee J, Wang Z H, He K L et al. High frequency MoS2 nanomechanical resonators[J]. ACS Nano, 7, 6086-6091(2013).
[4] Dominguez-Medina S, Fostner S, Defoort M et al. Neutral mass spectrometry of virus capsids above 100 megadaltons with nanomechanical resonators[J]. Science, 362, 918-922(2018).
[5] Zhu J K, Xu B, Xiao F et al. Frequency scaling, elastic transition, and broad-range frequency tuning in WSe2 nanomechanical resonators[J]. Nano Letters, 22, 5107-5113(2022).
[6] Scarabelli L, Sun M H, Zhuo X L et al. Plate-like colloidal metal nanoparticles[J]. Chemical Reviews, 123, 3493-3542(2023).
[7] Luo X N, Wang X Y, Zhang L L et al. Engineering miniature gold nanorods with tailorable plasmonic wavelength in NIR region via ternary surfactants mediated growth[J]. Nano Research, 16, 5087-5097(2023).
[8] Hartland G V. Optical studies of dynamics in noble metal nanostructures[J]. Chemical Reviews, 111, 3858-3887(2011).
[9] Crut A, Maioli P, Del Fatti N et al. Time-domain investigation of the acoustic vibrations of metal nanoparticles: size and encapsulation effects[J]. Ultrasonics, 56, 98-108(2015).
[10] Crut A, Maioli P, Del Fatti N et al. Optical absorption and scattering spectroscopies of single nano-objects[J]. Chemical Society Reviews, 43, 3921-3956(2014).
[11] Obermeier J, Schumacher T, Lippitz M. Nonlinear spectroscopy of plasmonic nanoparticles[J]. Advances in Physics: X, 3, 1454341(2018).
[12] Zijlstra P, Orrit M. Single metal nanoparticles: optical detection, spectroscopy and applications[J]. Reports on Progress in Physics, 74, 106401(2011).
[13] Joplin A, Chang W S, Link S. Imaging and spectroscopy of single metal nanostructure absorption[J]. Langmuir, 34, 3775-3786(2018).
[14] Major T A, Lo S S, Yu K A et al. Time-resolved studies of the acoustic vibrational modes of metal and semiconductor nano-objects[J]. The Journal of Physical Chemistry Letters, 5, 866-874(2014).
[15] Beane G, Devkota T, Brown B S et al. Ultrafast measurements of the dynamics of single nanostructures: a review[J]. Reports on Progress in Physics, 82, 016401(2019).
[16] Clark J N, Beitra L, Xiong G et al. Ultrafast three-dimensional imaging of lattice dynamics in individual gold nanocrystals[J]. Science, 341, 56-59(2013).
[17] Lee M C, Sirica N, Teitelbaum S W et al. Direct observation of coherent longitudinal and shear acoustic phonons in TaAs using ultrafast X-ray diffraction[J]. Physical Review Letters, 128, 155301(2022).
[18] Tong L, Yuan J, Zhang Z W et al. Nanoscale subparticle imaging of vibrational dynamics using dark-field ultrafast transmission electron microscopy[J]. Nature Nanotechnology, 18, 145-152(2023).
[19] Kim Y J, Jung H, Han S W et al. Ultrafast electron microscopy visualizes acoustic vibrations of plasmonic nanorods at the interfaces[J]. Matter, 1, 481-495(2019).
[20] Xiang D, Wu J A, Rottler J et al. Threshold for terahertz resonance of nanoparticles in water[J]. Nano Letters, 16, 3638-3641(2016).
[21] Wu J A, Xiang D, Gordon R. Monitoring gold nanoparticle growth in situ via the acoustic vibrations probed by four-wave mixing[J]. Analytical Chemistry, 89, 2196-2200(2017).
[22] Girard A, Gehan H, Crut A et al. Mechanical coupling in gold nanoparticles supermolecules revealed by plasmon-enhanced ultralow frequency Raman spectroscopy[J]. Nano Letters, 16, 3843-3849(2016).
[23] Portales H, Goubet N, Saviot L et al. Probing atomic ordering and multiple twinning in metal nanocrystals through their vibrations[J]. Proceedings of the National Academy of Sciences of the United States of America, 105, 14784-14789(2008).
[24] Del Fatti N, Voisin C, Christofilos D et al. Acoustic vibration of metal films and nanoparticles[J]. The Journal of Physical Chemistry A, 104, 4321-4326(2000).
[25] Hu M, Wang X A, Hartland G V et al. Vibrational response of nanorods to ultrafast laser induced heating: theoretical and experimental analysis[J]. Journal of the American Chemical Society, 125, 14925-14933(2003).
[26] van Dijk M A, Lippitz M, Orrit M. Detection of acoustic oscillations of single gold nanospheres by time-resolved interferometry[J]. Physical Review Letters, 95, 267406(2005).
[27] Muskens O L, Del Fatti N, Vallée F. Femtosecond response of a single metal nanoparticle[J]. Nano Letters, 6, 552-556(2006).
[28] Min W, Freudiger C W, Lu S J et al. Coherent nonlinear optical imaging: beyond fluorescence microscopy[J]. Annual Review of Physical Chemistry, 62, 507-530(2011).
[29] Trovatello C, Miranda H P C, Molina-Sánchez A et al. Strongly coupled coherent phonons in single-layer MoS2[J]. ACS Nano, 14, 5700-5710(2020).
[30] Pelton M, Sader J E, Burgin J et al. Damping of acoustic vibrations in gold nanoparticles[J]. Nature Nanotechnology, 4, 492-495(2009).
[31] Gao R X, He Y L, Zhang D M et al. Gigahertz optoacoustic vibration in Sub-5 nm tip-supported nano-optomechanical metasurface[J]. Nature Communications, 14, 485(2023).
[32] Lyu P T, Liu X R, Yin L X et al. Periodic distributions and ultrafast dynamics of hot electrons in plasmonic resonators[J]. Nano Letters, 23, 2269-2276(2023).
[33] Lo S S, Devadas M S, Major T A et al. Optical detection of single nano-objects by transient absorption microscopy[J]. Analyst, 138, 25-31(2013).
[34] Ahmed A, Pelton M, Guest J R. Understanding how acoustic vibrations modulate the optical response of plasmonic metal nanoparticles[J]. ACS Nano, 11, 9360-9369(2017).
[35] Amziane A, Belliard L, Decremps F et al. Ultrafast acoustic resonance spectroscopy of gold nanostructures: towards a generation of tunable transverse waves[J]. Physical Review B, 83, 014102(2011).
[36] Guillet Y, Audoin B, Ferrié M et al. All-optical ultrafast spectroscopy of a single nanoparticle-substrate contact[J]. Physical Review B, 86, 035456(2012).
[37] Ruijgrok P V, Zijlstra P, Tchebotareva A L et al. Damping of acoustic vibrations of single gold nanoparticles optically trapped in water[J]. Nano Letters, 12, 1063-1069(2012).
[38] Deacon W M, Lombardi A, Benz F et al. Interrogating nanojunctions using ultraconfined acoustoplasmonic coupling[J]. Physical Review Letters, 119, 023901(2017).
[39] Lin K H, Cheng H Y, Yang C Y et al. Phonon dynamics of single nanoparticles studied using confocal pump-probe backscattering[J]. Applied Physics Letters, 113, 171906(2018).
[40] Uthe B, Collis J F, Madadi M et al. Highly spherical nanoparticles probe gigahertz viscoelastic flows of simple liquids without the No-slip condition[J]. The Journal of Physical Chemistry Letters, 12, 4440-4446(2021).
[41] Zijlstra P, Tchebotareva A L, Chon J W M et al. Acoustic oscillations and elastic moduli of single gold nanorods[J]. Nano Letters, 8, 3493-3497(2008).
[42] Chen I J, Mante P A, Chang C K et al. Graphene-to-substrate energy transfer through out-of-plane longitudinal acoustic phonons[J]. Nano Letters, 14, 1317-1323(2014).
[43] Yu K A, Sader J E, Zijlstra P et al. Probing silver deposition on single gold nanorods by their acoustic vibrations[J]. Nano Letters, 14, 915-922(2014).
[44] Berte R, Della Picca F, Poblet M et al. Acoustic far-field hypersonic surface wave detection with single plasmonic nanoantennas[J]. Physical Review Letters, 121, 253902(2018).
[45] Della Picca F, Gutiérrez M V, Bragas A V et al. Monitoring the photothermal reshaping of individual plasmonic nanorods with coherent mechanical oscillations[J]. The Journal of Physical Chemistry C, 122, 29598-29606(2018).
[46] Xu F, Guillet Y, Ravaine S et al. All-optical in-depth detection of the acoustic wave emitted by a single gold nanorod[J]. Physical Review B, 97, 165412(2018).
[47] Boggiano H D, Berté R, Scarpettini A F et al. Determination of nanoscale mechanical properties of polymers via plasmonic nanoantennas[J]. ACS Photonics, 7, 1403-1409(2020).
[48] Yu K A, Zijlstra P, Sader J E et al. Damping of acoustic vibrations of immobilized single gold nanorods in different environments[J]. Nano Letters, 13, 2710-2716(2013).
[49] Staleva H, Skrabalak S E, Carey C R et al. Coupling to light, and transport and dissipation of energy in silver nanowires[J]. Physical Chemistry Chemical Physics, 11, 5889-5896(2009).
[50] Belliard L, Cornelius T W, Perrin B et al. Vibrational response of free standing single copper nanowire through transient reflectivity microscopy[J]. Journal of Applied Physics, 114, 193509(2013).
[51] Major T A, Crut A, Gao B et al. Damping of the acoustic vibrations of a suspended gold nanowire in air and water environments[J]. Physical Chemistry Chemical Physics, 15, 4169-4176(2013).
[52] Jean C, Belliard L, Cornelius T W et al. Direct observation of gigahertz coherent guided acoustic phonons in free-standing single copper nanowires[J]. The Journal of Physical Chemistry Letters, 5, 4100-4104(2014).
[53] Yu K A, Major T A, Chakraborty D et al. Compressible viscoelastic liquid effects generated by the breathing modes of isolated metal nanowires[J]. Nano Letters, 15, 3964-3970(2015).
[54] Jean C, Belliard L, Cornelius T W et al. Spatiotemporal imaging of the acoustic field emitted by a single copper nanowire[J]. Nano Letters, 16, 6592-6598(2016).
[55] Devkota T, Chakraborty D, Yu K et al. On the measurement of relaxation times of acoustic vibrations in metal nanowires[J]. Physical Chemistry Chemical Physics, 20, 17687-17693(2018).
[56] Chang W S, Wen F F, Chakraborty D et al. Tuning the acoustic frequency of a gold nanodisk through its adhesion layer[J]. Nature Communications, 6, 7022(2015).
[57] Eizner E, Akulov K, Schwartz T et al. Temporal dynamics of localized exciton–polaritons in composite organic–plasmonic metasurfaces[J]. Nano Letters, 17, 7675-7683(2017).
[58] Medeghini F, Crut A, Gandolfi M et al. Controlling the quality factor of a single acoustic nanoresonator by tuning its morphology[J]. Nano Letters, 18, 5159-5166(2018).
[59] Yi C Y, Su M N, Dongare P D et al. Polycrystallinity of lithographically fabricated plasmonic nanostructures dominates their acoustic vibrational damping[J]. Nano Letters, 18, 3494-3501(2018).
[60] Medeghini F, Rouxel R, Crut A et al. Signatures of small morphological anisotropies in the plasmonic and vibrational responses of individual nano-objects[J]. The Journal of Physical Chemistry Letters, 10, 5372-5380(2019).
[61] Fedou J, Viarbitskaya S, Marty R et al. From patterned optical near-fields to high symmetry acoustic vibrations in gold crystalline platelets[J]. Physical Chemistry Chemical Physics, 15, 4205-4213(2013).
[62] Major T A, Devadas M S, Lo S S et al. Optical and dynamical properties of chemically synthesized gold nanoplates[J]. The Journal of Physical Chemistry C, 117, 1447-1452(2013).
[63] Hoogeboom-Pot K M, Turgut E, Hernandez-Charpak J N et al. Nondestructive measurement of the evolution of layer-specific mechanical properties in sub-10 nm bilayer films[J]. Nano Letters, 16, 4773-4778(2016).
[64] Yu K A, Devkota T, Beane G et al. Brillouin oscillations from single Au nanoplate opto-acoustic transducers[J]. ACS Nano, 11, 8064-8071(2017).
[65] Wang J Z, Yu K, Yang Y et al. Strong vibrational coupling in room temperature plasmonic resonators[J]. Nature Communications, 10, 1527(2019).
[66] Delalande R, Bonhomme J, Dandeu E et al. Substrate influence on the vibrational response of gold nanoresonators: towards tunable acoustic nanosources[J]. Physical Review B, 105, 035422(2022).
[67] Devkota T, Yu K A, Hartland G V. Mass loading effects in the acoustic vibrations of gold nanoplates[J]. Nanoscale, 11, 16208-16213(2019).
[68] Wang J Z, Yang Y, Wang N et al. Long lifetime and coupling of acoustic vibrations of gold nanoplates on unsupported thin films[J]. The Journal of Physical Chemistry A, 123, 10339-10346(2019).
[69] Wang J Z, Li M Y, Jiang Y Q et al. Polymer dependent acoustic mode coupling and Hooke’s law spring constants in stacked gold nanoplates[J]. The Journal of Chemical Physics, 155, 144701(2021).
[70] Fernandes B D, Vilar-Vidal N, Baida H et al. Acoustic vibrations of core–shell nanospheres: probing the mechanical contact at the metal–dielectric interface[J]. The Journal of Physical Chemistry C, 122, 9127-9133(2018).
[71] Bykov A Y, Xie Y Y, Krasavin A V et al. Broadband transient response and wavelength-tunable photoacoustics in plasmonic hetero-nanoparticles[J]. Nano Letters, 23, 2786-2791(2023).
[72] Lindley S A, An Q, W A Ⅲ Goddard et al. Spatiotemporal temperature and pressure in thermoplasmonic gold nanosphere–water systems[J]. ACS Nano, 15, 6276-6288(2021).
[73] Wang L J, Oppermann M, Puppin M et al. Interband transition probing of coherent acoustic phonons of gold/metal oxide core–shell nanoparticles[J]. Applied Physics Letters, 122, 082201(2023).
[74] Huang W Y, Qian W, El-Sayed M A. The optically detected coherent lattice oscillations in silver and gold monolayer periodic nanoprism arrays: the effect of interparticle coupling[J]. The Journal of Physical Chemistry B, 109, 18881-18888(2005).
[75] Bonacina L, Callegari A, Bonati C et al. Time-resolved photodynamics of triangular-shaped silver nanoplates[J]. Nano Letters, 6, 7-10(2006).
[76] Taubert R, Hudert F, Bartels A et al. Coherent acoustic oscillations of nanoscale Au triangles and Pyramids: influence of size and substrate[J]. New Journal of Physics, 9, 376(2007).
[77] Fernandes B D, Spuch-Calvar M, Baida H et al. Acoustic vibrations of Au nano-bipyramids and their modification under Ag deposition: a perspective for the development of nanobalances[J]. ACS Nano, 7, 7630-7639(2013).
[78] Pelton M, Chakraborty D, Malachosky E et al. Viscoelastic flows in simple liquids generated by vibrating nanostructures[J]. Physical Review Letters, 111, 244502(2013).
[79] Kirschner M S, Ding W D, Li Y X et al. Phonon-driven oscillatory plasmonic excitonic nanomaterials[J]. Nano Letters, 18, 442-448(2018).
[80] Chakraborty D, Uthe B, Malachosky E W et al. Viscoelasticity enhances nanometer-scale slip in gigahertz-frequency liquid flows[J]. The Journal of Physical Chemistry Letters, 12, 3449-3455(2021).
[81] Ahmed A, Gelfand R, Storm S D et al. Low-frequency oscillations in optical measurements of metal-nanoparticle vibrations[J]. Nano Letters, 22, 5365-5371(2022).
[82] Wang L, Nishijima Y, Ueno K et al. Effect of dipole coupling on near-IR LSPR and coherent phonon vibration of periodic gold pair nanocuboids[J]. The Journal of Physical Chemistry C, 116, 17838-17846(2012).
[83] Petrova H, Lin C H, de Liejer S et al. Time-resolved spectroscopy of silver nanocubes: observation and assignment of coherently excited vibrational modes[J]. The Journal of Chemical Physics, 126, 094709(2007).
[84] Marty R, Arbouet A, Girard C et al. Damping of the acoustic vibrations of individual gold nanoparticles[J]. Nano Letters, 11, 3301-3306(2011).
[85] O’Brien K, Lanzillotti-Kimura N D, Rho J et al. Ultrafast acousto-plasmonic control and sensing in complex nanostructures[J]. Nature Communications, 5, 4042(2014).
[86] Della Picca F, Berte R, Rahmani M et al. Tailored hypersound generation in single plasmonic nanoantennas[J]. Nano Letters, 16, 1428-1434(2016).
[87] Imade Y, Ulbricht R, Tomoda M et al. Gigahertz optomechanical modulation by split-ring-resonator nanophotonic meta-atom arrays[J]. Nano Letters, 17, 6684-6689(2017).
[88] Lanzillotti-Kimura N D, O’Brien K P, Rho J et al. Polarization-controlled coherent phonon generation in acoustoplasmonic metasurfaces[J]. Physical Review B, 97, 235403(2018).
[89] Voisin C, Del Fatti N, Christofilos D et al. Time-resolved investigation of the vibrational dynamics of metal nanoparticles[J]. Applied Surface Science, 164, 131-139(2000).
[90] Lamb H. On the vibrations of an elastic sphere[J]. Proceedings of the London Mathematical Society, 189-212(1881).
[91] Maioli P, Stoll T, Sauceda H E et al. Mechanical vibrations of atomically defined metal clusters: from nano- to molecular-size oscillators[J]. Nano Letters, 18, 6842-6849(2018).
[92] Juvé V, Crut A, Maioli P et al. Probing elasticity at the nanoscale: terahertz acoustic vibration of small metal nanoparticles[J]. Nano Letters, 10, 1853-1858(2010).
[93] Gan Y, Sun Z, Chen Z. Breathing mode vibrations and elastic properties of single-crystal and penta-twinned gold nanorods[J]. Physical Chemistry Chemical Physics, 18, 22590-22598(2016).
[94] Cai H, Zhang B L, Gan Y. Time-domain analysis for fluid damping of acoustic vibrations of single gold nanorod in water[J]. The Journal of Physical Chemistry C, 125, 22064-22071(2021).
[95] Yu K A, Yang Y, Wang J Z et al. Nanoparticle–fluid interactions at ultrahigh acoustic vibration frequencies studied by femtosecond time-resolved microscopy[J]. ACS Nano, 15, 1833-1840(2021).
[96] Crut A, Maioli P, Del Fatti N et al. Acoustic vibrations of metal nano-objects: time-domain investigations[J]. Physics Reports, 549, 1-43(2015).
[97] Törmä P, Barnes W L. Strong coupling between surface plasmon polaritons and emitters: a review[J]. Reports on Progress in Physics, 78, 013901(2015).
[98] Saviot L, Murray D B. Vibrations of weakly coupled nanoparticles[J]. Physical Review B, 81, 235432(2010).
[99] Yi C Y, Dongare P D, Su M N et al. Vibrational coupling in plasmonic molecules[J]. Proceedings of the National Academy of Sciences of the United States of America, 114, 11621-11626(2017).
[100] Girard A, Gehan H, Mermet A et al. Acoustic mode hybridization in a single dimer of gold nanoparticles[J]. Nano Letters, 18, 3800-3806(2018).
[101] Girard A, Lermé J, Gehan H et al. Inelastic light scattering by multiple vibrational modes in individual gold nanodimers[J]. The Journal of Physical Chemistry C, 123, 14834-14841(2019).
[102] Lermé J, Margueritat J, Crut A. Vibrations of dimers of mechanically coupled nanostructures: analytical and numerical modeling[J]. The Journal of Physical Chemistry C, 125, 8339-8348(2021).
[103] Su M N, Ostovar B, Gross N et al. Acoustic vibrations and energy dissipation mechanisms for lithographically fabricated plasmonic nanostructures revealed by single-particle transient extinction spectroscopy[J]. The Journal of Physical Chemistry C, 125, 1621-1636(2021).
[104] Poblet M, Berté R, Boggiano H D et al. Acoustic coupling between plasmonic nanoantennas: detection and directionality of surface acoustic waves[J]. ACS Photonics, 8, 2846-2852(2021).
[105] Gil-Santos E, Ruz J J, Malvar O et al. Optomechanical detection of vibration modes of a single bacterium[J]. Nature Nanotechnology, 15, 469-474(2020).
[106] Wheaton S, Gelfand R M, Gordon R. Probing the Raman-active acoustic vibrations of nanoparticles with extraordinary spectral resolution[J]. Nature Photonics, 9, 68-72(2015).
[107] Rogers J A, Maznev A A, Banet M J et al. Optical generation and characterization of acoustic waves in thin films: fundamentals and applications[J]. Annual Review of Materials Science, 30, 117-157(2000).
[108] Gusev V E, Ruello P. Advances in applications of time-domain Brillouin scattering for nanoscale imaging[J]. Applied Physics Reviews, 5, 031101(2018).
[109] Pezeril T. Laser generation and detection of ultrafast shear acoustic waves in solids and liquids[J]. Optics & Laser Technology, 83, 177-188(2016).
[110] Thomsen C, Strait J, Vardeny Z et al. Coherent phonon generation and detection by picosecond light pulses[J]. Physical Review Letters, 53, 989-992(1984).
[111] Devos A, Foret M, Ayrinhac S et al. Hypersound damping in vitreous silica measured by picosecond acoustics[J]. Physical Review B, 77, 100201(2008).
[112] Lomonosov A M, Ayouch A, Ruello P et al. Nanoscale noncontact subsurface investigations of mechanical and optical properties of nanoporous low-k material thin film[J]. ACS Nano, 6, 1410-1415(2012).
[113] Che S, Guduru P R, Nurmikko A V et al. A scanning acoustic microscope based on picosecond ultrasonics[J]. Ultrasonics, 56, 153-159(2015).
[114] Khafizov M, Pakarinen J, He L et al. Subsurface imaging of grain microstructure using picosecond ultrasonics[J]. Acta Materialia, 112, 209-215(2016).
[115] Edward S, Zhang H, Setija I et al. Detection of hidden gratings through multilayer nanostructures using light and sound[J]. Physical Review Applied, 14, 014015(2020).
[116] Wang Y Z, Hurley D H, Hua Z L et al. Imaging grain microstructure in a model ceramic energy material with optically generated coherent acoustic phonons[J]. Nature Communications, 11, 1597(2020).
[117] Foglia L, Mincigrucci R, Maznev A A et al. Extreme ultraviolet transient gratings: a tool for nanoscale photoacoustics[J]. Photoacoustics, 29, 100453(2023).
[118] Wang J Z, Zhu J Q, Jiang Y Q et al. Observation of elastic heterogeneity and phase evolution in 2D layered perovskites using coherent acoustic phonons[J]. Nanophotonics, 10, 4009-4017(2021).
[119] Audoin B, Rossignol C, Chigarev N et al. Picosecond acoustics in vegetal cells: non-invasive in vitro measurements at a sub-cell scale[J]. Ultrasonics, 50, 202-207(2010).
[120] Dehoux T, Abi Ghanem M, Zouani O F et al. Probing single-cell mechanics with picosecond ultrasonics[J]. Ultrasonics, 56, 160-171(2015).
[121] Danworaphong S, Tomoda M, Matsumoto Y et al. Three-dimensional imaging of biological cells with picosecond ultrasonics[J]. Applied Physics Letters, 106, 163701(2015).
[122] Pérez-Cota F, Smith R J, Moradi E et al. High resolution 3D imaging of living cells with sub-optical wavelength phonons[J]. Scientific Reports, 6, 39326(2016).
[123] Viel A, Péronne E, Sénépart O et al. Picosecond ultrasounds as elasticity probes in neuron-like cells models[J]. Applied Physics Letters, 115, 213701(2019).
[124] Prevedel R, Diz-Muñoz A, Ruocco G et al. Brillouin microscopy: an emerging tool for mechanobiology[J]. Nature Methods, 16, 969-977(2019).
[125] Uthe B, Sader J E, Pelton M. Optical measurement of the picosecond fluid mechanics in simple liquids generated by vibrating nanoparticles: a review[J]. Reports on Progress in Physics, 85, 103001(2022).
[126] Yu K A, Jiang Y Q, Wright C et al. Energy dissipation for nanometer sized acoustic oscillators[J]. The Journal of Physical Chemistry C, 126, 3811-3819(2022).
[127] Galstyan V, Pak O S, Stone H A. A note on the breathing mode of an elastic sphere in Newtonian and complex fluids[J]. Physics of Fluids, 27, 032001(2015).
[128] He B, Zhang C F, Zhu W D et al. Coherent optical phonon oscillation and possible electronic softening in WTe2 crystals[J]. Scientific Reports, 6, 30487(2016).
[129] Jeong T Y, Jin B M, Rhim S H et al. Coherent lattice vibrations in mono- and few-layer WSe2[J]. ACS Nano, 10, 5560-5566(2016).
[130] Miao X C, Zhang G W, Wang F J et al. Layer-dependent ultrafast carrier and coherent phonon dynamics in black phosphorus[J]. Nano Letters, 18, 3053-3059(2018).
[131] Soubelet P, Reynoso A A, Fainstein A et al. The lifetime of interlayer breathing modes of few-layer 2H-MoSe2 membranes[J]. Nanoscale, 11, 10446-10453(2019).
[132] Yan W J, Akimov A V, Barra-Burillo M et al. Coherent phononics of van der waals layers on nanogratings[J]. Nano Letters, 22, 6509-6515(2022).
[133] Vialla F, Del Fatti N. Time-domain investigations of coherent phonons in van der waals thin films[J]. Nanomaterials, 10, 2543(2020).
[134] Baldini E, Dominguez A, Palmieri T et al. Exciton control in a room temperature bulk semiconductor with coherent strain pulses[J]. Science Advances, 5, eaax2937(2019).
[135] Estrecho E, Pieczarka M, Wurdack M et al. Low-energy collective oscillations and bogoliubov sound in an exciton-polariton condensate[J]. Physical Review Letters, 126, 075301(2021).
[136] Kobecki M, Scherbakov A V, Kukhtaruk S M et al. Giant photoelasticity of polaritons for detection of coherent phonons in a superlattice with quantum sensitivity[J]. Physical Review Letters, 128, 157401(2022).
[137] Dunn A, Poyser C, Dean P et al. High-speed modulation of a terahertz quantum cascade laser by coherent acoustic phonon pulses[J]. Nature Communications, 11, 835(2020).
[138] Gadelha A C, Ohlberg D A A, Rabelo C et al. Localization of lattice dynamics in low-angle twisted bilayer graphene[J]. Nature, 590, 405-409(2021).
[139] Liu S Y, Hammud A, Hamada I et al. Nanoscale coherent phonon spectroscopy[J]. Science Advances, 8, eabq5682(2022).
[140] Delalande R, Garcia-Sanchez D, Belliard L. Towards acoustic microscopy at the nanoscale by coupling atomic force microscopy with picosecond ultrasonics[J]. Physical Review B, 107, 085409(2023).
[141] Forn-Díaz P, Lamata L, Rico E et al. Ultrastrong coupling regimes of light-matter interaction[J]. Reviews of Modern Physics, 91, 025005(2019).
[142] Kockum A F, Miranowicz A, De Liberato S et al. Ultrastrong coupling between light and matter[J]. Nature Reviews Physics, 1, 19-40(2019).
[143] Zalalutdinov M K, Robinson J T, Fonseca J J et al. Acoustic cavities in 2D heterostructures[J]. Nature Communications, 12, 3267(2021).
[144] Jansen M, Tisdale W A, Wood V. Nanocrystal phononics[J]. Nature Materials, 22, 161-169(2023).
[145] Yu K, Jiang Y Q, Chen Y G et al. Compressible viscoelasticity of cell membranes determined by gigahertz-frequency acoustic vibrations[J]. Photoacoustics, 31, 100494(2023).
Get Citation
Copy Citation Text
Kuai Yu, Yungao Chen, Guoping Wang. Laser Excitation of Coherent Acoustic Vibrations of Metallic Nanoresonators and Their Applications[J]. Acta Optica Sinica, 2023, 43(16): 1623015
Category: Optical Devices
Received: Apr. 21, 2023
Accepted: Jun. 27, 2023
Published Online: Aug. 1, 2023
The Author Email: Yu Kuai (kyu@szu.edu.cn)