Acta Photonica Sinica, Volume. 52, Issue 12, 1210002(2023)

Spectral-spatial Attention Residual Networks for Hyperspectral Image Classification

Feifei WANG1,3, Huijie ZHAO1,2,3, Na LI1,2,3、*, Siyuan LI4, and Yu CAI5
Author Affiliations
  • 1Key Laboratory of Precision Opto-Mechatronics Technology,Ministry of Education,School of Instrumentation and Optoelectronic Engineering,Beihang University,Beijing 100191,China
  • 2Institute of Artificial Intelligence,Beihang University,Beijing 100191,China
  • 3Aerospace Optical-Microwave Integrated Precision Intelligent Sensing,Key Laboratory of Ministry of Industry and Information Technology,Beihang University,Beijing 100191,China
  • 4Key Laboratory of Spectral Imaging Technology,Xi'an Institute of Optics and Precision Mechanics,Chinese Academy of Sciences,Xi'an 710119,China
  • 5China Academy of Launch Vehicle Technology,Beijing 100076,China
  • show less
    Figures & Tables(28)
    Flow chart of spectral-spatial attention residual network
    The structure of the central region spectral attention mechanism
    The structure of the spatial attention mechanism
    The structure of the residual network
    The spectral residual network module
    The spatial residual network module
    The flow chart of SSARN with IP dataset as an example
    IP dataset
    SA dataset
    PU dataset
    Houston dataset
    The visualization result of each algorithm on the IP dataset
    The visualization result of each algorithm on the SA dataset
    The visualization result of each algorithm on the PU dataset
    The visualization result of each algorithm on the Houston dataset
    • Table 1. The number of training and testing samples on IP dataset

      View table
      View in Article

      Table 1. The number of training and testing samples on IP dataset

      Sample categorySample nameTraining samplesTest samples
      Total——2 04510 249
      0Alfalfa946
      1Corn-notill2851 428
      2Corn-mintill166830
      3Corn47237
      4Grass-pasture96483
      5Grass-trees146730
      6Grass-pasture-mowed528
      7Hay-windrowed95478
      8Oats420
      9Soybean-notill194972
      10Soybean-mintill4912 455
      11Soybean-clean118593
      12Wheat41205
      13Woods2531 265
      14Buildings-Grass-Trees-Drives77386
      15Stone-Steel-Towers1893
    • Table 2. The number of training and testing samples on SA dataset

      View table
      View in Article

      Table 2. The number of training and testing samples on SA dataset

      Sample categorySample nameTraining samplesTest samples
      Total——1 07654 129
      0Brocoli_green_weeds_1402 009
      1Brocoli_green_weeds_2743 726
      2Fallow391 976
      3Fallow_rough_plow271 394
      4Fallow_smooth532 678
      5Stubble793 959
      6Celery713 579
      7Grapes_untrained22511 271
      8Soil_vinyard_develop1246 203
      9Corn_senesced_green_weeds653 278
      10Lettuce_romaine_4wk211 068
      11Lettuce_romaine_5wk381 927
      12Lettuce_romaine_6wk18916
      13Lettuce_romaine_7wk211 070
      14Vinyard_untrained1457 268
      15Vinyard_vertical_trellis361 807
    • Table 3. The number of training and testing samples on PU dataset

      View table
      View in Article

      Table 3. The number of training and testing samples on PU dataset

      Sample categorySample nameTraining samplesTest samples
      Total——42342 776
      0Asphalt666 631
      1Meadows18618 649
      2Gravel202 099
      3Trees303 064
      4Painted metal sheets131 345
      5Bare Soil505 029
      6Bitumen131 330
      7Self-Blocking Bricks363 682
      8Shadows9947
    • Table 4. The number of training and testing samples on Houston dataset

      View table
      View in Article

      Table 4. The number of training and testing samples on Houston dataset

      Sample categorySample nameTraining samplesTest samples
      Total——2 83212 197
      0Healthy Grass1981 053
      1Stressed Grass1901 064
      2Synthetic Grass192505
      3Trees1881 056
      4Soil1861 056
      5Water182143
      6Residential1961 072
      7Commercial1911 053
      8Road1931 059
      9Highway1911 036
      10Railway1811 054
      11Parking Lot 11921 041
      12Parking Lot 2184285
      13Tennis Court181247
      14Running Track187473
    • Table 5. The overall accuracy of the different size of the patch on the four datasets

      View table
      View in Article

      Table 5. The overall accuracy of the different size of the patch on the four datasets

      SizeIPSAPUHouston
      9×999.5798.2398.2081.04
      11×1199.6999.0298.4685.35
      13×1399.7999.6999.0985.75
      15×1599.5099.6598.8785.78
      17×1799.5199.6899.0985.80
      19×1999.3899.7198.9584.16
    • Table 6. The overall accuracy of the different network on the four datasets

      View table
      View in Article

      Table 6. The overall accuracy of the different network on the four datasets

      NetworkIPSAPUHouston
      Basic network97.8998.2198.3183.06
      Spectral attention network99.0298.7498.5484.91
      Spectral-spatial attention residual network99.7999.6999.0985.75
    • Table 7. The overall accuracy of the different network with different training ratios on the IP datasets

      View table
      View in Article

      Table 7. The overall accuracy of the different network with different training ratios on the IP datasets

      IP dataset scale5%10%15%20%
      2D CNN65.4971.1880.1782.85
      3D CNN73.6184.2090.7993.23
      HybirdSN88.9195.4498.1299.49
      RIAN87.6593.8796.7597.82
      SSFTT94.9898.1999.3099.45
      SSARN96.0998.5699.4399.79
    • Table 8. The overall accuracy of the different network with different training ratios on the IP datasets

      View table
      View in Article

      Table 8. The overall accuracy of the different network with different training ratios on the IP datasets

      SA dataset scale0.5%1%1.5%2%
      2D CNN71.9287.3388.1288.88
      3D CNN80.0888.6490.8092.45
      HybirdSN93.2795.5598.1798.44
      RIAN91.8896.3796.7097.18
      SSFTT94.7296.3197.2298.70
      SSARN95.0297.8998.7199.69
    • Table 9. The overall accuracy of the different network with different training ratios on the IP datasets

      View table
      View in Article

      Table 9. The overall accuracy of the different network with different training ratios on the IP datasets

      PU dataset scale0.3%0.5%0.7%1%
      2D CNN76.1382.9284.8689.22
      3D CNN76.9482.2185.1086.24
      HybirdSN85.0693.0394.8797.63
      RIAN76.8289.9891.7494.03
      SSFTT86.9994.7896.6597.24
      SSARN93.9397.4698.1599.09
    • Table 10. The category accuracy,OA,AA and Kappa of the different algorithms on IP dataset

      View table
      View in Article

      Table 10. The category accuracy,OA,AA and Kappa of the different algorithms on IP dataset

      Sample category2D CNN3D CNNHybridSNRIANSSFTTSSARN
      043.4884.78100.0095.6295.65100.00
      175.2891.8199.7296.2999.9399.86
      274.2288.6799.7696.6399.4099.28
      359.9291.1494.9494.9497.89100.00
      493.1794.6298.1495.0399.38100.00
      598.0899.45100.0099.4599.45100.00
      657.1460.7196.4392.86100.00100.00
      793.31100.00100.0099.79100.00100.00
      850.0095.00100.0095.00100.00100.00
      976.9590.4398.6697.4899.6999.38
      1085.1793.3699.7198.4599.0299.76
      1162.5682.9799.3396.4698.8299.83
      1299.02100.00100.0098.5499.51100.00
      1395.0297.15100.0099.84100.00100.00
      1480.8396.37100.0097.41100.00100.00
      1578.4993.55100.0098.9298.9298.92
      AA76.4291.2599.1797.0799.2399.81
      OA82.8593.2399.4997.8299.4599.79
      Kappa80.3692.2799.4297.5299.3899.76
    • Table 11. The category accuracy,OA,AA and Kappa of the different algorithms on SA dataset

      View table
      View in Article

      Table 11. The category accuracy,OA,AA and Kappa of the different algorithms on SA dataset

      Sample category2D CNN3D CNNHybridSNRIANSSFTTSSARN
      098.4196.67100.0099.85100.00100.00
      197.2699.60100.0099.76100.00100.00
      294.3399.44100.0099.5499.80100.00
      398.5798.4299.5098.2898.1498.64
      497.8797.8098.0298.4797.4299.96
      598.36100.00100.0099.92100.00100.00
      697.2697.09100.0099.89100.0099.97
      779.386.8696.7392.9197.3299.35
      899.1997.11100.0098.9499.90100.00
      979.4492.0498.8799.1896.7198.93
      1092.1391.67100.0096.4498.6099.81
      1199.9599.4899.9099.9599.90100.00
      1295.6399.7899.5698.91100.00100.00
      1395.7097.0198.8897.6699.6399.63
      1470.2077.4595.1894.3097.8499.52
      1593.9793.6999.4597.1299.28100.00
      AA92.9695.2699.1398.2099.0399.74
      OA88.8892.4598.4497.1898.7099.69
      Kappa87.6191.5998.2696.8698.5599.65
    • Table 12. Category accuracy,OA,AA and Kappa of the different algorithms on PU dataset

      View table
      View in Article

      Table 12. Category accuracy,OA,AA and Kappa of the different algorithms on PU dataset

      Sample category2D CNN3D CNNHybridSNRIANSSFTTSSARN
      092.3483.4097.6293.8396.00100.00
      197.4299.3699.8398.0599.8499.98
      259.2748.2683.9967.3792.8598.71
      373.6090.5797.5595.7297.4994.13
      498.4484.54100.0099.85100.0099.85
      576.9166.8197.9592.5698.11100.00
      679.8570.2397.8975.7981.8894.81
      787.7874.7193.7096.4492.1897.58
      893.7791.1394.7285.6496.3097.99
      AA84.3778.7895.9289.4794.9698.12
      OA89.2286.2497.6394.0397.2499.09
      Kappa85.4781.4696.8592.0896.3498.79
    • Table 13. The category accuracy,OA,AA and Kappa of the different algorithms on Houston dataset

      View table
      View in Article

      Table 13. The category accuracy,OA,AA and Kappa of the different algorithms on Houston dataset

      Sample category2D CNN3D CNNHybridSNRIANSSFTTSSARN
      082.7282.5372.9381.2982.5382.62
      184.2182.0581.9658.5584.7785.15
      297.8292.2885.1588.3285.94100.00
      391.2991.5772.2580.2192.9991.67
      498.2099.2498.4983.6299.72100.00
      594.4192.3177.6260.8494.4195.80
      675.7575.1966.3366.5183.8686.38
      766.9556.5173.3145.1165.4388.60
      873.4766.9550.0558.8374.4181.87
      944.7950.77100.0020.1751.7447.88
      1078.1873.9186.3435.4874.3881.50
      1177.9172.3380.3151.3078.4893.47
      1284.2181.7565.6145.6189.8385.26
      1398.7996.76100.0076.5299.19100.00
      14100.0082.45100.0086.6894.93100.00
      AA83.2579.7780.6962.6083.5188.01
      OA79.9276.9579.4160.6680.6685.75
      Kappa78.3775.1877.6457.5879.1084.57
    Tools

    Get Citation

    Copy Citation Text

    Feifei WANG, Huijie ZHAO, Na LI, Siyuan LI, Yu CAI. Spectral-spatial Attention Residual Networks for Hyperspectral Image Classification[J]. Acta Photonica Sinica, 2023, 52(12): 1210002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 18, 2023

    Accepted: May. 25, 2023

    Published Online: Feb. 19, 2024

    The Author Email: Na LI (lina_17@buaa.edu.cn)

    DOI:10.3788/gzxb20235212.1210002

    Topics