Spectroscopy and Spectral Analysis, Volume. 41, Issue 12, 3851(2021)

Classification of Camouflages Using Hyperspectral Images Combined With Fusing Adaptive Sparse Representation and Correlation Coefficient

Bing ZHOU, Bing-xuan LI*;, Xuan HE, He-xiong LIU, and Fa-zhen WANG
Author Affiliations
  • Department of Opto-electronics, Army Engineering University of PLA, Shijiazhuang 050000, China
  • show less
    Figures & Tables(9)
    Gray scale and pseudo colour images of experimental data 1
    Gray scale and pseudo colour images of experimental data 2
    The classification accuracies of the three algorithm are affected by the parameter setting(a): The number of neighborhoods and KNN classification accuracy; (b): K and SRC classification accuracy;(c): Regularization parameter λ and CRC classification accuracy
    The classification accuracy of CCASRC algorithm is impacted by the parameters λ and N
    Classification results of various classification methods in the background of green space(a): K-means; (b): KNN; (c): SRC; (d): CRC; (e): ASRC; (f): CCASRC
    Matrix histogram of various classification method OA
    Classification results of various methods in desert background(a): SRC; (b): CRC; (c): ASRC; (d): CCASRC
    • Table 1. CCASR algorithm flow chart

      View table
      View in Article

      Table 1. CCASR algorithm flow chart

      输入: 高光谱图像数据x, 样本字典Dt
      循环: 遍历高光谱图像的所有像元
      步骤1: 确定待测样本。
      步骤2: 构造样本字典, 针对待测样本x, 构造局部背景样本字典Dh, 联合样本字典与局部背景样本字典D=[Dt, Dh]。
      步骤3: 对待测样本进行自适应稀疏编码, 计算重构误差
      α^i=argminx-Dαi*s.t. αi2ηri(x)=x-Dtα^i2
      步骤4: 根据式(10)计算待测样本与训练样本之间的CC值
      步骤5: 根据提出的融合策略来融合CC值与残差值。
      Class(x)=argmin(ri(x)+λ×(1-cci(y)))
      输出: 高光谱图像分类图
    • Table 2. Classification of various features and backgrounds OA and Kappa

      View table
      View in Article

      Table 2. Classification of various features and backgrounds OA and Kappa

      类别方法
      训练样本测试样本SRCCRCASRCCCASRC
      A6706 7835 865(0.864)4 703(0.69)6 327(0.93)6 437(0.94)
      B31344302(0.877)344(1)344(1.)323(0.93)
      C37376324(0.86)331(0.88)297(0.789)281(0.747)
      D2312 3141 770(0.76)2 124(0.91)2 075(0.89)2 145(0.92)
      E49149 14237 897(0.77)37 642(0.77)42 082(0.85)44 385(0.89)
      F83083 08069 038(0.83)66 116(0.79)67 234(0.81)70 450(0.84)
      G24521 63319 196(0.88)15 939(0.73)20 306(0.93)20 834(0.96)
      OA0.8390.7940.8660.905
      KC0.6840.6420.7570.891
    Tools

    Get Citation

    Copy Citation Text

    Bing ZHOU, Bing-xuan LI, Xuan HE, He-xiong LIU, Fa-zhen WANG. Classification of Camouflages Using Hyperspectral Images Combined With Fusing Adaptive Sparse Representation and Correlation Coefficient[J]. Spectroscopy and Spectral Analysis, 2021, 41(12): 3851

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Sep. 10, 2020

    Accepted: --

    Published Online: Dec. 17, 2021

    The Author Email:

    DOI:10.3964/j.issn.1000-0593(2021)12-3851-06

    Topics