International Journal of Extreme Manufacturing, Volume. 7, Issue 2, 22003(2025)

Piezo-actuated smart mechatronic systems for extreme scenarios

Yuan Zhongxiang, Zhou Shuliu, Hong Cailin, Xiao Ziyu, Zhang Zhengguang, Chen Xuedong, Zeng Lizhan, Wu Jiulin, Wang Yunlong, and Li Xiaoqing
References(291)

[1] [1] Dong S X 2012 Review on piezoelectric, ultrasonic, and magnetoelectric actuatorsJ. Adv. Dielectr.21230001

[2] [2] Chen J G, Cheng J R and Dong S X 2014 Review on high temperature piezoelectric ceramics and actuators based on BiScO3–PbTiO3 solid solutionsJ. Adv. Dielectr.41430002

[3] [3] Yang C and Youcef-Toumi K 2022 Principle, implementation, and applications of charge control for piezo-actuated nanopositioners: a comprehensive reviewMech. Syst. Signal Process.171108885

[4] [4] Lin X D, Feng Z Y, Xiong Y, Sun W, Yao W, Wei Y, Wang Z L and Sun Q 2024 Piezotronic neuromorphic devices: principle, manufacture, and applicationsInt. J. Extrem. Manuf.6032011

[5] [5] Roy N K and Cullinan M A 2018 Fast trajectory tracking of a flexure-based, multiaxis nanopositioner with 50-mm travelIEEE/ASME Trans. Mechatronics232805–13

[6] [6] Liu Y J and Zhang Z 2021 A large range compliant XY nano-manipulator with active parasitic rotation rejectionPrecis. Eng.72640–52

[7] [7] Zhang C, Huang X L, Yang M, Chen S L and Yang G L 2022 Design of a long stroke nanopositioning stage with self-damping actuator and flexure guideIEEE Trans. Ind. Electron.6910417–27

[8] [8] Lyu Z K and Xu Q S 2023 Design of a new bio-inspired dual-axis compliant micromanipulator with millimeter strokesIEEE Trans. Robot.39470–84

[9] [9] Lyu Z K and Xu Q S 2024 Design of a newXYcompliant parallel manipulator based on deployable spatial monolithic structureIEEE/ASME Trans. Mechatronics293762–73

[10] [10] Liu Y J, Li X X, Ge L and Zhang Z 2024 Ultralarge-area stitchless scanning probe lithography andin situcharacterization system using a compliant nanomanipulatorIEEE/ASME Trans. Mechatronics29924–35

[11] [11] Sang N, Zhang C, Chen S L, Huang X L, Jiang D X, Chen J and Yang G L 2024 A novel nanopositioning stage integrated with voice coil motor and active eddy current damperIEEE/ASME Trans. Mechatronics1–12

[12] [12] Chen F, Lu X D and Altintas Y 2014 A novel magnetic actuator design for active damping of machining toolsInt. J. Mach. Tools Manuf.8558–69

[13] [13] Chen F, Hanifzadegan M, Altintas Y and Lu X D 2015 Active damping of boring bar vibration with a magnetic actuatorIEEE/ASME Trans. Mechatronics202783–94

[14] [14] Csencsics E, Schlarp J and Schitter G 2018 High-performance hybrid-reluctance-force-based tip/tilt system: design, control, and evaluationIEEE/ASME Trans. Mechatronics232494–502

[15] [15] Zhang F, Shao S B, Tian Z, Xu M L and Xie S L 2019 Active-passive hybrid vibration isolation with magnetic negative stiffness isolator based on Maxwell normal stressMech. Syst. Signal Process.123244–63

[16] [16] Yuan S Jet al2021 Tunable negative stiffness spring using Maxwell normal stressInt. J. Mech. Sci.193106127

[17] [17] Wang X Y, Meng Y X, Huang WW, Li L L, Zhu Z W and Zhu L M 2023 Design, modeling, and test of a normal-stressed electromagnetic actuated compliant nano-positioning stageMech. Syst. Signal Process.185109753

[18] [18] Wang X Y, Yu B C, Tan L W, Meng Y X, Yu Q, Li L L, Zhu Z W and Zhu L M 2024 Serial-kinematic hybrid electromagnetic-piezoelectric AFM scanner for high-throughput raster scanningIEEE Trans. Ind. Electron.721–11

[19] [19] Wang X Y, Li L L, Meng Y X, Tan L W, Huang W W, Zhu Z W, Jiao F and Zhu L M 2024 A normal-stressed electromagnetic-driven stiffness-tunable nanopositionerIEEE Trans. Ind. Electron.7115130–9

[20] [20] Tan L W, Wang X Y, Yu Q, Yu B C, Meng Y X, Li L L, Zhang X Q and Zhu L M 2024 An electromagnetic-piezoelectric hybrid actuated nanopositioner for atomic force microscopyIEEE Trans. Instrum. Meas.737503813

[21] [21] Yu B C, Wang X Y, Tan L W, Yu Q, Meng Y X, Li L M and Zhu L M 2024 Electromagnetic-mechanical modeling and evaluation of a 2-DoF parallel-kinematic compliant nano-positioning stage based on normal-stressed electromagnetic actuatorsIEEE Trans. Autom. Sci. Eng.1–14

[22] [22] Huang W W, Zhu Z W, Zhang X Q and Zhu L M 2024 A hybrid electromagnetic-piezoelectric actuated tri-axial fast tool servo integrated with a three-dimensional elliptical vibration generatorPrecis. Eng.86213–24

[23] [23] Kumar D, Daudpoto J and Chowdhry B S 2020 Challenges for practical applications of shape memory alloy actuatorsMater. Res. Express7073001

[24] [24] Gao C D, Zeng Z H, Peng S P and Shuai C J 2022 Magnetostrictive alloys: promising materials for biomedical applicationsBioact. Mater.8177–95

[25] [25] Li J, Deng J, Zhang S J, Chen W S, Zhao J and Liu Y X 2023 Developments and challenges of miniature piezoelectric robots: a reviewAdv. Sci.102305128

[26] [26] Spanner K and Koc B 2016 Piezoelectric motors, an overviewActuators56

[27] [27] Wang L, Chen W S, Liu J K, Deng J and Liu Y X 2019 A review of recent studies on non-resonant piezoelectric actuatorsMech. Syst. Signal Process.133106254

[28] [28] Gao X Y, Yang J K, Wu J G, Xin X D, Li Z M, Yuan X T, Shen X Y and Dong S X 2020 Piezoelectric actuators and motors: materials, designs, and applicationsAdv. Mater. Technol.51900716

[29] [29] Ma X F, Liu J K, Zhang S J, Deng J and Liu Y X 2023 Recent trends in bionic stepping piezoelectric actuators for precision positioning: a reviewSens. ActuatorsA364114830

[30] [30] Wang S P, Rong W B, Wang L F, Xie H, Sun L N and Mills J K 2019 A survey of piezoelectric actuators with long working stroke in recent years: classifications, principles, connections and distinctionsMech. Syst. Signal Process.123591–605

[31] [31] Mohith S, Upadhya A R, Navin K P, Kulkarni S M and Rao M 2021 Recent trends in piezoelectric actuators for precision motion and their applications: a reviewSmart Mater. Struct.30013002

[32] [32] Gu G Y, Zhu L M, Su C Y, Ding H and Fatikow S 2016 Modeling and control of piezo-actuated nanopositioning stages: a surveyIEEE Trans. Autom. Sci. Eng.13313–32

[33] [33] Sabarianand D V, Karthikeyan P and Muthuramalingam T 2020 A review on control strategies for compensation of hysteresis and creep on piezoelectric actuators based micro systemsMech. Syst. Signal Process.140106634

[34] [34] Yuan Z X, Zhou S L, Zhang Z G, Xiao Z Y, Hong C L, Chen X D, Zeng L Z and Li X Q 2024 Piezo-actuated smart mechatronic systems: nonlinear modeling, identification, and controlMech. Syst. Signal Process.221111715

[35] [35] Chen A N, Su J, Li Y J, Zhang H B, Shi Y S, Yan C Z and Lu J 2023 3D/4D printed bio-piezoelectric smart scaffolds for next-generation bone tissue engineeringInt. J. Extrem. Manuf.5032007

[36] [36] Ding B X, Li X, Li C L, Li Y M and Chen S C 2023 A survey on the mechanical design for piezo-actuated compliant micro-positioning stagesRev. Sci. Instrum.94101502

[37] [37] Katzir S 2012 Who knew piezoelectricity? Rutherford and Langevin on submarine detection and the invention of sonarNotes Rec.66141–57

[38] [38] Alexander M 1931 Converting electrical oscillations into mechanical movementU. S. Patent.No.1804838

[39] [39] Williams A L W and Brown W J 1948 Piezoelectric motorU. S. Patent. No.2439499

[40] [40] Snitka V, Mizariene V and Zukauskas D 1996 The status of ultrasonic motors in the former Soviet UnionUltrasonics34247–50

[41] [41] Uchino K 1998 Piezoelectric ultrasonic motors: overviewSmart Mater. Struct.7273

[42] [42] Barth H V 1973 Ultrasonic driven motorIBM Tech. Discl. Bull.162263

[43] [43] Vishnevsky V S, Kavertsev V L, Kartashev I A, Lavrinenko V V, Nekrasov M M and Prez A A 1975 Piezoelectric motor structuresU. S. Patent. No.4019073

[44] [44] Zhang Z M, An Q, Li J W and Zhang W J 2012 Piezoelectric friction–inertia actuator—A critical review and future perspectiveInt. J. Adv. Manuf. Technol.62669–85

[45] [45] Jeon J, Han C, Han Y M and Choi S B 2014 A new type of a direct-drive valve system driven by a piezostack actuator and sliding spoolSmart Mater. Struct.23075002

[46] [46] Xuan Z F, Jin T, Ha N S, Goo N S, Kim T H, Bae B W, Ko H S and Yoon K W 2014 Performance of piezo-stacks for a piezoelectric hybrid actuator by experimentsJ. Intell. Mater. Syst. Struct.252212–20

[47] [47] Xu Q S and Li Y M 2011 Analytical modeling, optimization and testing of a compound bridge-type compliant displacement amplifierMech. Mach. Theory46183–200

[48] [48] Dong W, Chen F X, Gao F T, Yang M, Sun L N, Du Z J, Tang J and Zhang D 2018 Development and analysis of a bridge-lever-type displacement amplifier based on hybrid flexure hingesPrecis. Eng.54171–81

[49] [49] Ding Y and Lai L J 2019 Design and analysis of a displacement amplifier with high load capacity by combining bridge-type and Scott-Russell mechanismsRev. Sci. Instrum.90065102

[50] [50] Chen F X, Zhang Q J, Gao Y Z and Dong W 2020 A review on the flexure-based displacement amplification mechanismsIEEE Access8205919–37

[51] [51] Hunstig M 2017 Piezoelectric inertia motors—A critical review of history, concepts, design, applications, and perspectivesActuators67

[52] [52] Li J P, Huang H and Morita T 2019 Stepping piezoelectric actuators with large working stroke for nano-positioning systems: a reviewSens. ActuatorsA29239–51

[53] [53] Tian X Q, Liu Y X, Deng J, Wang L and Chen W S 2020 A review on piezoelectric ultrasonic motors for the past decade: classification, operating principle, performance, and future work perspectivesSens. ActuatorsA306111971

[54] [54] Claeyssen F, Le Letty R, Barillot F and Sosnicki O 2007 Amplified piezoelectric actuators: static & dynamic applicationsFerroelectrics3513–14

[55] [55] Zhou X Y, Wu S, Wang X X, Wang Z S, Zhu Q X, Sun J S, Huang P F, Wang X W, Huang W and Lu Q B 2024 Review on piezoelectric actuators: materials, classifications, applications, and recent trendsFront. Mech. Eng.196

[56] [56] Cai J N, Chen F X, Sun L N and Dong W 2021 Design of a linear walking stage based on two types of piezoelectric actuatorsSens. ActuatorsA332112067

[57] [57] Peng Y X, Peng Y L, Gu X Y, Wang J and Yu H Y 2015 A review of long range piezoelectric motors using frequency leveraged methodSens. ActuatorsA235240–55

[58] [58] Izuhara S and Mashimo T 2021 Design and characterization of a thin linear ultrasonic motor for miniature focus systemsSens. ActuatorsA329112797

[59] [59] Al Janaideh M, Rakotondrabe M and Tan X B 2016 Guest editorial focused section on hysteresis in smart mechatronic systems: modeling, identification, and controlIEEE/ASME Trans. Mechatronics211–3

[60] [60] Habibullah H 2020 30 years of atomic force microscopy: creep, hysteresis, cross-coupling, and vibration problems of piezoelectric tube scannersMeasurement159107776

[61] [61] Pota H R, Petersen I R and Rana M S 2013 Creep, hysteresis, and cross-coupling reduction in the high-precision positioning of the piezoelectric scanner stage of an atomic force microscopeIEEE Trans. Nanotechnol.121125–34

[62] [62] Rana S, Pota H R and Petersen I R 2018 A survey of methods used to control piezoelectric tube scanners in high-speed AFM imagingAsian J. Control201379–99

[63] [63] Li L L, Li C X, Gu G Y and Zhu L M 2019 Modified repetitive control based cross-coupling compensation approach for the piezoelectric tube scanner of atomic force microscopesIEEE/ASME Trans. Mechatronics24666–76

[64] [64] Meng Y X, Li L L, Wang X Y, Zhang X Q and Zhu L M 2023 Data-driven based cross-coupling compensation method for the piezoelectric tube scanner of atomic force microscopesMeasurement219113260

[65] [65] Deng J, Liu Y X, Zhang S J and Liu J K 2020 Modeling and experiments of a nano-positioning and high frequency scanning piezoelectric platform based on function module actuatorSci. China Technol. Sci.632541–52

[66] [66] Lee C, Lee J W, Ryu S G and Oh J H 2019 Optimum design of a large area, flexure based XY mask alignment stage for a 12-inch wafer using grey relation analysisRobot. Comput.-Integr. Manuf.58109–19

[67] [67] Schitter G and Stemmer A 2004 Identification and open-loop tracking control of a piezoelectric tube scanner for high-speed scanning-probe microscopyIEEE Trans. Control Syst. Technol.12449–54

[68] [68] Rost M Jet al2005 Scanning probe microscopes go video rate and beyondRev. Sci. Instrum.76053710

[69] [69] Picco L M, Bozec L, Ulcinas A, Engledew D J, Antognozzi M, Horton M A and Miles M J 2007 Breaking the speed limit with atomic force microscopyNanotechnology18044030

[70] [70] Schitter G, Thurner P J and Hansma P K 2008 Design and input-shaping control of a novel scanner for high-speed atomic force microscopyMechatronics18282–8

[71] [71] Schitter G, Rijke W F and Phan N 2008 Dual actuation for high-bandwidth nanopositioningProc. 2008 47th IEEE Conf. on Decision and Control(IEEE) pp 5176–81

[72] [72] Ando T, Uchihashi T and Fukuma T 2008 High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processesProg. Surf. Sci.83337–437

[73] [73] Yong Y K, Aphale S S and Moheimani S O R 2009 Design, identification, and control of a flexure-based XY stage for fast nanoscale positioningIEEE Trans. Nanotechnol.846–54

[74] [74] Fleming A J 2009 High-speed vertical positioning for contact-mode atomic force microscopyProc. 2009 IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics(IEEE) pp 522–7

[75] [75] Kenton B J and Leang K K 2012 Design and control of a three-axis serial-kinematic high-bandwidth nanopositionerIEEE/ASME Trans. Mechatronics17356–69

[76] [76] Fleming A J and Leang K K 2014Design, Modeling and Control of Nanopositioning Systems(Springer) p 15

[77] [77] Nagel W S, Andersson S B, Clayton G M and Leang K K 2022 Low-coupling hybrid parallel-serial-kinematic nanopositioner with nonorthogonal flexure: nonlinear design and controlIEEE/ASME Trans. Mechatronics273683–93

[78] [78] Juarez J C, Young D W, Sluz J E, Riggins I I J L and Hughes D H 2011 Free-space optical channel propagation tests over a 147-km linkProc. SPIE803880380B

[79] [79] Fletcher T Met al2011 Observations of atmospheric effects for FALCON Laser communication system flight testProc. SPIE803880380F

[80] [80] Sodnik Z, Lutz H, Furch B and Meyer R 2010 Optical satellite communications in EuropeProc. SPIE7587758705

[81] [81] Nevin K E, Doyle K B and Pillsbury A D 2011 Optomechanical design and analysis for the LLCD space terminal telescopeProc. SPIE812781270G

[82] [82] Jing Z, Xu M and Feng B 2014 Modeling and optimization of a novel two-axis mirror-scanning mechanism driven by piezoelectric actuatorsSmart Mater. Struct.24025002

[83] [83] Kluk D J 2007An Advanced Fast Steering Mirror for Optical Communication(Massachusetts Institute of Technology)

[84] [84] Boone B G, Bruzzi J R, Kluga B E, Millard W P, Fielhauer K B, Duncan D D, Hahn D E E, Drabenstadt C W, Maurer D E and Bokulic R S 2004 Optical communications development for spacecraft applicationsJohns Hopkins APL Tech. Dig.25306–15

[85] [85] Tapos F M, Edinger D J, Hilby T R, Ni M S, Holmes B C and Stubbs D M 2005 High bandwidth fast steering mirrorProc. SPIE587760–73

[86] [86] Wang G and Rao C H 2015 Adaptive control of piezoelectric fast steering mirror for high precision tracking applicationSmart Mater. Struct.24035019

[87] [87] Liu L, Li Q, Yun H, Liang J and Ma X F 2019 Composite modeling and parameter identification of broad bandwidth hysteretic dynamics in piezoelectric fast steering platformMech. Syst. Signal Process.12197–111

[88] [88] Lee K D, Kim Y S, Kim H S, Lee C H and Lee W G 2017 Random vibration analysis of the tip-tilt system in the GMT fast steering secondary mirrorPubl. Astron. Soc. Pac.129095001

[89] [89] Han W W, Shao S B, Zhang S W, Tian Z and Xu M L 2022 Design and modeling of decoupled miniature fast steering mirror with ultrahigh precisionMech. Syst. Signal Process.167108521

[90] [90] Kim H S, Don Lee K, Lee C H and Lee W G 2023 Development of piezoelectric fast steering mirror with tilt error compensation for portable spectroscopic sensorProc. Inst. Mech. Eng.B2371847–57

[91] [91] Zhong J P, Li L C, Nishida R and Shinshi T 2020 Design and evaluation of a PEA-driven fast steering mirror with a permanent magnet preload force mechanismPrecis. Eng.6295–105

[92] [92] Chen Z J, Duan Q W, Zhang L Y, Tan Y, Mao Y and Ren G 2024 Integrated optimization of structure and control for fast steering mirrorsMicromachines15298

[93] [93] Woody S and Smith S 2006 Design and performance of a dual drive system for tip-tilt angular control of a 300 mm diameter mirrorMechatronics16389–97

[94] [94] Yuan G, Wang D H and Li S D 2015 Single piezoelectric ceramic stack actuator based fast steering mirror with fixed rotation axis and large excursion angleSens. ActuatorsA235292–9

[95] [95] Dong Z C, Jiang A M, Dai Y F and Xue J W 2018 Space-qualified fast steering mirror for an image stabilization system of space astronomical telescopesAppl. Opt.579307–15

[96] [96] Chang T Q, Wang Q D, Zhang L, Hao N and Dai W J 2019 Battlefield dynamic scanning and staring imaging system based on fast steering mirrorJ. Syst. Eng. Electron.3037–56

[97] [97] Fang C, Guo J, Yang G Q, Jiang Z H, Xu X H and Wang T F 2016 Design and performance test of a two-axis fast steering mirror driven by piezoelectric actuatorsOptoelectron. Lett.12333–6

[98] [98] Xiao R J, Xu M L, Shao S B and Tian Z 2019 Design and wide-bandwidth control of large aperture fast steering mirror with integrated-sensing unitMech. Syst. Signal Process.126211–26

[99] [99] Xiang S H, Wang P, Chen S H, Wu X, Xiao D and Zheng X W 2009 The research of a novel single mirror 2d laser scannerProc. SPIE738273821A

[100] [100] Shao B, Chen L G, Rong W B, Ru C H and Xu M 2009 Modeling and design of a novel precision tilt positioning mechanism for inter-satellite optical communicationSmart Mater. Struct.18035009

[101] [101] Shao S B, Tian Z, Song S Y and Xu M L 2018 Two-degrees-of-freedom piezo-driven fast steering mirror with cross-axis decoupling capabilityRev. Sci. Instrum.89055003

[102] [102] Kim H S, Lee D H, Hur D J and Lee D C 2019 Development of two-dimensional piezoelectric laser scanner with large steering angle and fast response characteristicsRev. Sci. Instrum.90065004

[103] [103] Ling M X, Cao J Y, Jiang Z, Zeng M H and Li Q S 2019 Optimal design of a piezo-actuated 2-DOF millimeter-range monolithic flexure mechanism with a pseudo-static modelMech. Syst. Signal Process.115120–31

[104] [104] Kluk D J, Boulet M T and Trumper D L 2012 A high-bandwidth, high-precision, two-axis steering mirror with moving iron actuatorMechatronics22257–70

[105] [105] Yu Z H, Wang L H, Wang Y, Zhang Y G, Liu Y C and Wu Z Y 2023 Control of a MEMS fast steering mirror with improved quasi-static performanceIEEE Access1195307–14

[106] [106] Newport(available at: www.newport.com.cn/f/fast-steering-mirrors)

[107] [107] Newport(available at: www.newport.com.cn/mam/celum/celum_assets/np/resources/FSM_Data_Sheet.pdf?2)

[108] [108] Zhu Q Y, Parsa S, Shi L Z, Harsono M, Wakida N M and Berns M W 2009 A combined double-tweezers and wavelength-tunable laser nanosurgery microscopeProc. SPIE740062–70

[109] [109] Xiao Y J, Liu Y F, Dong R and Xiong Z 2011 Experiment study of ATP system for free-space optical communicationsOptoelectron. Lett.7451–3

[110] [110] Schrmann M, Schwinde S, Jobst P J, Stenzel O, Wilbrandt S, Szeghalmi A, Bingel A, Munzert P and Kaiser N 2017 High-reflective coatings for ground and space based applicationsProc. SPIE10563105630M

[111] [111] Park J H, Lee H S, Lee J H, Yun S N, Ham Y B and Yun D W 2012 Design of a piezoelectric-driven tilt mirror for a fast laser scannerJpn. J. Appl. Phys.5109MD14

[112] [112] Fu J J, Yan C X, Liu W and Yuan T 2015 Simplified equations of the compliant matrix for right elliptical flexure hingesRev. Sci. Instrum.86115115

[113] [113] Zhang W F, Yuan J, Yan C X, Gao Z L and Dong Y Z 2021 Multi-objective optimization design of natural frequency of two-degree-of-freedom fast steering mirror systemIEEE Access933689–703

[114] [114] Sun L N, Shao B and Qu D S 2007 Structure design, dynamic analysis and test of FPSM of APT system in free space laser communicationProc. 2007 First Int. Conf. on Integration and Commercialization of Micro and Nanosystemspp 273–80

[115] [115] Zhang S J, Liu Y X, Deng J, Li K and Chang Q B 2021 Development of a low capacitance two-axis piezoelectric tilting mirror used for optical assisted micromanipulationMech. Syst. Signal Process.154107602

[116] [116] Chang Q B, Chen W S, Liu J K, Yu H P, Deng J and Liu Y X 2021 Development of a novel two-DOF piezo-driven fast steering mirror with high stiffness and good decoupling characteristicMech. Syst. Signal Process.159107851

[117] [117] Fan S X, Ouyang D, Chen N, Yu Y and Fan D P 2022 Design and optimization of a fast steering mirror driven by voice coil motorProc. CSAA/IET Int. Conf. on Aircraft Utility Systems(IEEE) pp 1434–9

[118] [118] Physik Instrumente 2018 (available at: www.physikinst rumente.com/products.html)

[119] [119] Puig L, Barton A and Rando N 2010 A review on large deployable structures for astrophysics missionsActa Astronaut.6712–26

[120] [120] Johnson L, Young R, Montgomery E and Alhorn D 2011 Status of solar sail technology within NASAAdv. Space Res.481687–94

[121] [121] Yingling A J and Agrawal B N 2014 Applications of tuned mass dampers to improve performance of large space mirrorsActa Astronaut.941–13

[122] [122] Ogilvie A, Allport J, Hannah M and Lymer J 2008. Autonomous robotic operations for on-orbit satellite servicingProc. SPIE695850–61

[123] [123] Crisp J A, Adler M, Matijevic J R, Squyres S W, Arvidson R E and Kass D M 2003 Mars exploration rover missionJ. Geophys. Res. Planets1088061

[124] [124] Backes P G, Norris J S, Powell M W and Vona M A 2004 Multi-mission activity planning for Mars lander and rover missionsProc. 2004 IEEE Aerospace Conf. Proc.(IEEE) pp 877–86

[125] [125] Schenker P S, Bar-Cohen Y, Brown D K, Lindemann R A, Garrett M S, Baumgartner E T, Lee S, Lih S S and Joffe B 1997 Composite manipulator utilizing rotary piezoelectric motors: new robotic technologies for Marsin-situplanetary scienceProc. SPIE3041918–26

[126] [126] Pochard M, Niot J M, Coste G and Privat M 1997 Smart mechanism for optical space equipmentProc. 48th Int. Astronautical Congress(AIDAA) pp 145–52

[127] [127] Li C Let al2015 The Chang'e 3 mission overviewSpace Sci. Rev.19085–101

[128] [128] Li C Let al2021 Overview of the Chang'e-4 mission: opening the frontier of scientific exploration of the lunar far sideSpace Sci. Rev.21735

[129] [129] Ning X, Wang Y, Peng J, Zhang G, Jiang F and Zhang D 2022 Design and implementation of the integrated thermal control system for Chang'E−5 lunar moduleActa Astronaut.200188–95

[130] [130] Harvey B 2019China in Space: The Great Leap Forward(Springer)

[131] [131] Wang L, Xiang Y, Wang Z, You H and Hu Y 2023 On-board geometric rectification for micro-satellite based on lightweight feature databaseRemote Sens.155333

[132] [132] NUAA Super Control Technology Co., Ltd(available at: www.scnuaa.com/)

[133] [133] Zhao C S 2011Ultrasonic Motors: Technologies and Applications(Springer)

[134] [134] Zhao C, Li X, Li X and Harkness P 2023 Power ultrasonics: exploration toolsPower Ultrasonics2nd J A Gallego-Jurez, K F Graff and M Lucas pp 531–535 (Woodhead Publishing)

[135] [135] Yan J P, Liu Y X, Liu J K, Xu D M and Chen W S 2016 The design and experiment of a novel ultrasonic motor based on the combination of bending modesUltrasonics71205–10

[136] [136] Liu Y X, Wang L, Yan J P, Su Q and Yu H P 2018 Design and experiment evaluation of a rotatable and deployable sleeve mechanism using a two-DOF piezoelectric actuatorIEEE Access663486–95

[137] [137] Niu Z J and Cui Y J 2017 Research on fuzzy control of control moment gyro driven by traveling wave hollow ultrasonic motorProc. 2017 24th Int. Conf. on Mechatronics and Machine Vision in Practice(IEEE) pp 1–5

[138] [138] Pan S, Xu Z F and Zhao C S 2019 A novel single-gimbal control moment gyroscope driven by an ultrasonic motorAdv. Mech. Eng.111687814019844382

[139] [139] Liu J, Niu Z J, Zhu H and Zhao C S 2019 Design and experiment of a large-aperture hollow traveling wave ultrasonic motor with low speed and high torqueAppl. Sci.93979

[140] [140] Pan S, Xu F Z, Chen L, Huang W Q and Wu J T 2020 Coupled dynamic modeling and analysis of the single gimbal control moment gyroscope driven by ultrasonic motorIEEE Access8146233–47

[141] [141] Jrnas V, Kazokaitis G and Maeika D 2020 3DOF ultrasonic motor with two piezoelectric ringsSensors20834

[142] [142] Kang L Z, Gao M, Fang F, Li T, Yang Y, Hu S N, Zhu R, Sun J F and Hou X 2022 Design of precision driving control system for standing-wave ultrasonic motorProc. SPIE1216912169AW

[143] [143] Wong W L, Su X Y, Li X, Cheung C M G, Klein R, Cheng C Y and Wong T Y 2014 Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysisLancet Glob. Health2e106–16

[144] [144] Yau J W Yet al2012 Global prevalence and major risk factors of diabetic retinopathyDiabetes Care35556–64

[145] [145] Riviere C N and Thakor N V 1996 Modeling and canceling tremor in human-machine interfacesIEEE Eng. Med. Biol. Mag.1529–36

[146] [146] Ang W T, Riviere C N and Khosla P K 2000 An active hand-held instrument for enhanced microsurgical accuracyProc. 3rd Int. Conf. Pittsburgh(Springer) pp 878–86

[147] [147] Riviere C N, Ang W T and Khosla P K 2003 Toward active tremor canceling in handheld microsurgical instrumentsIEEE Trans. Robot. Autom.19793–800

[148] [148] MacLachlan R A, Becker B C, Tabares J C, Podnar G W, Lobes L A and Riviere C N 2012 Micron: an actively stabilized handheld tool for microsurgeryIEEE Trans. Robot.28195–212

[149] [149] Yang S, MacLachlan R A and Riviere C N 2015 Manipulator design and operation of a six-degree-of-freedom handheld tremor-canceling microsurgical instrumentIEEE/ASME Trans. Mechatronics20761–72

[150] [150] Yang S, Martel J N, Lobes L A Jr and Riviere C N 2018 Techniques for robot-aided intraocular surgery using monocular visionInt. J. Robot. Res.37931–52

[151] [151] Song C, Gehlbach P L and Kang J U 2012 Active tremor cancellation by a “smart” handheld vitreoretinal microsurgical tool using swept source optical coherence tomographyOpt. Express2023414–21

[152] [152] Kang J U and Cheon G W 2018 Demonstration of subretinal injection using common-path swept source OCT guided microinjectorAppl. Sci.81287

[153] [153] Suzuki H and Wood R J 2020 Origami-inspired miniature manipulator for teleoperated microsurgeryNat. Mach. Intell.2437–46

[154] [154] Yoshida N and Perry A C 2007 Piezo-actuated mouse intracytoplasmic sperm injection (ICSI)Nat. Protoc.2296–304

[155] [155] Xu Q S 2018 Design and development of a flexure-based compact constant-force robotic gripperMicromachines for Biological Micromanipulationed Q SXu (Springer) pp 145–68

[156] [156] Wang G W and Xu Q S 2017 Design and development of a piezo-driven microinjection system with force feedbackAdv. Robot.311349–59

[157] [157] Wang G W and Xu Q S 2017 Design and precision position/force control of a piezo-driven microinjection systemIEEE/ASME Trans. Mechatronics221744–54

[158] [158] Yu S D, Xie M Y, Wu H T, Ma J Y, Wang R B and Kang S Z 2019 Design and control of a piezoactuated microfeed mechanism for cell injectionInt. J. Adv. Manuf. Technol.1054941–52

[159] [159] Yu S D, Xie M Y, Wu H T, Ma J Y, Li Y and Gu H L 2022 Composite proportional-integral sliding mode control with feedforward control for cell puncture mechanism with piezoelectric actuationISA Trans.124427–35

[160] [160] Deng J, Liu S H, Liu Y X, Wang L, Gao X and Li K 2022 A 2-DOF needle insertion device using inertial piezoelectric actuatorIEEE Trans. Ind. Electron.693918–27

[161] [161] Zhang C, Shi G L and Ehmann K F 2017 Investigation of hybrid micro-texture fabrication in elliptical vibration-assisted cuttingInt. J. Mach. Tools Manuf.12072–84

[162] [162] Xu W X and Wu Y B 2019 Piezoelectric actuator for machining on macro-to-micro cylindrical components by a precision rotary motion controlMech. Syst. Signal Process.114439–47

[163] [163] Gong Z, Huo D H, Niu Z Y, Chen W Q and Cheng K 2022 A novel long-stroke fast tool servo system with counterbalance and its application to the ultra-precision machining of microstructured surfacesMech. Syst. Signal Process.173109063

[164] [164] Han L, Zhang J J and Sun T 2022 Tailoring fiber arrangement in subsurface damage layer of unidirectional CFRP composites by reverse multi-pass cuttingCompos. Sci. Technol.227109571

[165] [165] Du P F, Chen W S, Deng J, Zhang S J, Zhang J J and Liu Y X 2023 A critical review of piezoelectric ultrasonic transducers for ultrasonic-assisted precision machiningUltrasonics135107145

[166] [166] Zhang Z Y, Yan J W and Kuriyagawa T 2019 Manufacturing technologies toward extreme precisionInt. J. Extrem. Manuf.1022001

[167] [167] Legge P 1964 Ultrasonic drilling of ceramicsInd. Diamond Rev.2420–24

[168] [168] Kumar S, Wu C S, Padhy G K and Ding W 2017 Application of ultrasonic vibrations in welding and metal processing: a status reviewJ. Manuf. Process.26295–322

[169] [169] Geng D X, Lu Z H, Yao G, Liu J J, Li Z and Zhang D Y 2017 Cutting temperature and resulting influence on machining performance in rotary ultrasonic elliptical machining of thick CFRPInt. J. Mach. Tools Manuf.123160–70

[170] [170] Zhu L D, Ni C B, Yang Z C and Liu C F 2019 Investigations of micro-textured surface generation mechanism and tribological properties in ultrasonic vibration-assisted milling of Ti–6Al–4VPrecis. Eng.57229–43

[171] [171] Wang H, Hu Y B, Cong W L and Hu Z L 2019 A mechanistic model on feeding-directional cutting force in surface grinding of CFRP composites using rotary ultrasonic machining with horizontal ultrasonic vibrationInt. J. Mech. Sci.155450–60

[172] [172] Kumabe J, Fuchizawa K, Soutome T and Nishimoto Y 1989 Ultrasonic superposition vibration cutting of ceramicsPrecis. Eng.1171–77

[173] [173] Ding K, Fu Y C, Su H H, Chen Y, Yu X Z and Ding G Z 2014 Experimental studies on drilling tool load and machining quality of C/SiC composites in rotary ultrasonic machiningJ. Mater. Process. Technol.2142900–7

[174] [174] Wang J J, Feng P F, Zhang J F and Guo P 2018 Reducing cutting force in rotary ultrasonic drilling of ceramic matrix composites with longitudinal-torsional coupled vibrationManuf. Lett.181–5

[175] [175] Yang Z C, Zhu L D, Ni C B and Ning J S 2019 Investigation of surface topography formation mechanism based on abrasive-workpiece contact rate model in tangential ultrasonic vibration-assisted CBN grinding of ZrO2 ceramicsInt. J. Mech. Sci.15566–82

[176] [176] Astashev V K 1992 Effect of ultrasonic vibration of a single-point tool on the process of cuttingJ. Mach. Manuf. Reliab.365–70

[177] [177] Moriwaki T, Shamoto E and Inoue K 1992 Ultraprecision ductile cutting of glass by applying ultrasonic vibrationCIRP Ann.41141–4

[178] [178] Moriwaki T and Shamoto E 1993 Ultraprecision ductile cutting of brittle materials by applying ultrasonic vibrationInternational Progress in Precision Engineeringed N Ikawa, S Shimada, T Moriwaki, P A McKeown and R C Spragg (Newnes) pp 708–18

[179] [179] Zhong Z W and Lin G 2005 Diamond turning of a metal matrix composite with ultrasonic vibrationsMater. Manuf. Processes.20727–35

[180] [180] Kim J D and Lee E S 1994 A study of the ultrasonic-vibration cutting of carbon-fiber reinforced plasticsJ. Mater. Process. Technol.43259–77

[181] [181] Zhou M, Wang X J, Ngoi B K A and Gan J G K 2002 Brittle–ductile transition in the diamond cutting of glasses with the aid of ultrasonic vibrationJ. Mater. Process. Technol.121243–51

[182] [182] Gan J, Wang X, Zhou M, Ngoi B and Zhong Z 2003 Ultraprecision diamond turning of glass with ultrasonic vibrationInt. J. Adv. Manuf. Technol.21952–5

[183] [183] Xu L H, Na H B and Han G C 2018 Machinablity improvement with ultrasonic vibration–assisted micro-millingAdv. Mech. Eng.101687814018812531

[184] [184] Suzuki N, Yokoi H and Shamoto E 2011 Micro/nano sculpturing of hardened steel by controlling vibration amplitude in elliptical vibration cuttingPrecis. Eng.3544–50

[185] [185] Shamoto E, Suzuki N, Tsuchiya E, Hori Y, Inagaki H and Yoshino K 2005 Development of 3 DOF ultrasonic vibration tool for elliptical vibration cutting of sculptured surfacesCIRP Ann.54321–4

[186] [186] Zhang J G, Suzuki N, Wang Y L and Shamoto E 2015 Ultra-precision nano-structure fabrication by amplitude control sculpturing method in elliptical vibration cuttingPrecis. Eng.3986–99

[187] [187] Jia D Z, Li C H, Zhang Y B, Yang M, Zhang X P, Li R Z and Ji H J 2019 Experimental evaluation of surface topographies of NMQL grinding ZrO2 ceramics combining multiangle ultrasonic vibrationInt. J. Adv. Manuf. Technol.100457–73

[188] [188] Zheng J X and Xu J W 2006 Experimental research on the ground surface quality of creep feed ultrasonic grinding ceramics (Al2O3)Chin. J. Aeronaut.19359–65

[189] [189] Liu X F, Wu D B, Zhang J H, Hu X Y and Cui P 2019 Analysis of surface texturing in radial ultrasonic vibration-assisted turningJ. Mater. Process. Technol.267186–95

[190] [190] Liang Z, Wu Y B, Wang X B, Peng Y, Xu W X and Zhao W X 2009 A two-dimensional ultrasonically assisted grinding technique for high efficiency machining of sapphire substrateMater. Sci. Forum626-62735–40

[191] [191] Qin N, Pei Z J, Treadwell C and Guo D M 2009 Physics-based predictive cutting force model in ultrasonic-vibration-assisted grinding for titanium drillingJ. Manuf. Sci. Eng.131041011

[192] [192] Peng Y, Wu Y, Liang Z and Guo Y 2010 Kinematical characteristics of two-dimensional vertical ultrasonic vibration-assisted grinding technologyProc. SPIE7655765508

[193] [193] Liang Z Q, Wang X B, Wu Y B, Zhao W X, Peng Y F and Sato T 2010 Wear characteristics of diamond wheel in elliptical ultrasonic assisted grinding (EUAG) of monocrystal siliconProc. SPIE7655765535

[194] [194] Zhang C and Song Y 2019 Design and kinematic analysis of a novel decoupled 3D ultrasonic elliptical vibration assisted cutting mechanismUltrasonics9579–94

[195] [195] Zhang C and Song Y 2019 A novel design method for 3D elliptical vibration-assisted cutting mechanismMech. Mach. Theory134308–22

[196] [196] Tang X T, Liu Y X, Shi S J, Chen W S and Qi X D 2017 Development of a novel ultrasonic drill using longitudinal-bending hybrid modeIEEE Access57362–70

[197] [197] Moriwaki T and Shamoto E 1995 Ultrasonic elliptical vibration cuttingCIRP Ann.4431–34

[198] [198] Kurniawan R, Ali S, Park K M, Jung S T and Ko T J 2019 Experimental study of microgroove surface using three-dimensional elliptical vibration texturingJ. Micro Nano Manuf.7024502

[199] [199] Du P F, Han L, Qiu X, Chen W S, Deng J, Liu Y X and Zhang J J 2022 Development of a high-precision piezoelectric ultrasonic milling tool using longitudinal-bending hybrid transducerInt. J. Mech. Sci.222107239

[200] [200] Du P F, Liu Y X, Deng J, Yu H P and Chen W S 2022 A compact ultrasonic burnishing system for high precision planar burnishing: design and performance evaluationIEEE Trans. Ind. Electron.698201–11

[201] [201] Gozen B A and Ozdoganlar O B 2010 A rotating-tip-based mechanical nano-manufacturing process: nanomillingNanoscale Res. Lett.51403–7

[202] [202] Kawasegi N, Takano N, Oka D, Morita N, Yamada S, Kanda K, Takano S, Obata T and Ashida K 2006 Nanomachining of silicon surface using atomic force microscope with diamond tipJ. Manuf. Sci. Eng.128723–9

[203] [203] Akamine S, Albrecht T R, Zdeblick M J and Quate C F 1990 A planar process for microfabrication of a scanning tunneling microscopeSens. ActuatorsA23964–70

[204] [204] Zimmermann S, Tiemerding T and Fatikow S 2015 Automated robotic manipulation of individual colloidal particles using vision-based controlIEEE/ASME Trans. Mechatron.202031–8

[205] [205] Zimmermann S 2017Dedicated Robotic Handling and Processing at the Submicrometer Scale: Feasibility Studies(Verlag Dr Hut)

[206] [206] Kasaya T, Miyazaki H T, Saito S, Koyano K, Yamaura T and Sato T 2004 Image-based autonomous micromanipulation system for arrangement of spheres in a scanning electron microscopeRev. Sci. Instrum.752033–42

[207] [207] Onal C D, Ozcan O and Sitti M 2011 Automated 2-D nanoparticle manipulation using atomic force microscopyIEEE Trans. Nanotechnol.10472–81

[208] [208] Lu H J, Wang P B, Tan R, Yang X and Shen Y J 2018 Nanorobotic system for precisein situthree-dimensional manufacture of helical microstructuresIEEE Robot. Autom. Lett.32846–53

[209] [209] Lu H J, Liu Y T, Yang Y Y, Wang P B and Shen Y J 2018 Specimen's plane misaligned installation solution based on charge fluctuation inside SEMAppl. Phys. Lett.112144102

[210] [210] Tsushima N and Su W H 2018 A study on adaptive vibration control and energy conversion of highly flexible multifunctional wingsAerosp. Sci. Technol.79297–309

[211] [211] Yuan Z X, Zhang Z G, Zeng L Z, Huang Z W, Wu J L and Li X Q 2024 Two-axis Lorentz actuator for active vibration isolation system in optical payloadsMech. Syst. Signal Process.219111614

[212] [212] Song G, Sethi V and Li H N 2006 Vibration control of civil structures using piezoceramic smart materials: a reviewEng. Struct.281513–24

[213] [213] Liu C C, Jing X J, Daley S and Li F M 2015 Recent advances in micro-vibration isolationMech. Syst. Signal Process.56-5755–80

[214] [214] Yuan Z X, Zhang Z G, Zeng L Z and Li X Q 2023 Microvibration isolation in sensitive payloads: methodology and designNonlinear Dyn.11119563–611

[215] [215] Yuan Z X, Zhang Z G, Zeng L Z, Zhu L and Li X Q 2023 Micropositioning and microvibration isolation of a novel hybrid active–passive platform with two-axis actuator for optical payloadsMech. Syst. Signal Process.204110764

[216] [216] Hagood N W and von Flotow A 1991 Damping of structural vibrations with piezoelectric materials and passive electrical networksJ. Sound Vib.146243–68

[217] [217] Yuan Z X, Zhang Z G, Zeng L Z and Li X Q 2023 Key technologies in active microvibration isolation systems: modeling, sensing, actuation, and control algorithmsMeasurement222113658

[218] [218] Giurgiutiu V 2000 Review of smart-materials actuation solutions for aeroelastic and vibration controlJ. Intell. Mater. Syst. Struct.11525–44

[219] [219] Tsushima N and Su W H 2017 Flutter suppression for highly flexible wings using passive and active piezoelectric effectsAerosp. Sci. Technol.6578–89

[220] [220] Jiao X L, Zhang J X, Li W B, Wang Y Y, Ma W L and Zhao Y 2023 Advances in spacecraft micro-vibration suppression methodsProg. Aerosp. Sci.138100898

[221] [221] Derham R C and Hagood N W 1996 Rotor design using smart materials to actively twist bladesProc. 52nd Annual Forum(AHS) pp 1242–52

[222] [222] Thakkar D and Ganguli R 2005 Active twist control of smart helicopter rotor-a surveyJ. Aerosp. Sci. Technol.57429–48

[223] [223] Viana F A C and Steffen V Jr 2006 Multimodal vibration damping through piezoelectric patches and optimal resonant shunt circuitsJ. Braz. Soc. Mech. Sci. Eng.28293–310

[224] [224] Nitzsche F, Zimcik D G, Ryall T G, Moses R W and Henderson D A 2001 Closed-loop control tests for vertical fin buffeting alleviation using strain actuationJ. Guid. Control Dyn.24855–7

[225] [225] Nitzsche F 2012 The use of smart structures in the realization of effective semi-active control systems for vibration reductionJ. Braz. Soc. Mech. Sci. Eng.34371–7

[226] [226] Canfield R A, Morgenstern S D and Kunz D L 2008 Alleviation of buffet-induced vibration using piezoelectric actuatorsComput. Struct.86281–91

[227] [227] Grewal A, Zimcik D G, Hurtubise L and Leigh B 2000 Active cabin noise and vibration control for turboprop aircraft using multiple piezoelectric actuatorsJ. Intell. Mater. Syst. Struct.11438–47

[228] [228] Preumont A 2023 Active damping, vibration isolation, and shape control of space structures: a tutorialActuators12122

[229] [229] Ghasemi-Nejhad M N and Ma K G 2010 Simultaneous thrust vector control and vibration isolation of satellites using steerable smart platformsProc. SPIE7643484–91

[230] [230] Russell D A 2012. Flexural vibration and the perception of sting in hand-held sports implementsINTER-NOISE and NOISE-CON Congress and Conf. Proc.(Institute of Noise Control Engineering) pp 8213–21

[231] [231] Akhras G and Sdes F 2012 Smart Systems, ambient intelligence and energy sources: current developments and future applicationsComputer Science and Ambient Intelligence(Wiley Online Library) pp 55–70

[232] [232] Lim S C and Choi S B 2007 Vibration control of an HDD disk-spindle system using piezoelectric bimorph shunt damping: II. Optimal design and shunt damping implementationSmart Mater. Struct.16901–8

[233] [233] Lim S C and Choi S B 2007 Vibration control of an HDD disk-spindle system utilizing piezoelectric bimorph shunt damping: i. Dynamic analysis and modeling of the shunted driveSmart Mater. Struct.16891–900

[234] [234] Albertelli P, Elmas S, Jackson M R, Bianchi G, Parkin R M and Monno M 2012 Active spindle system for a rotary planing machineInt. J. Adv. Manuf. Technol.631021–34

[235] [235] Aggogeri F, Borboni A, Merlo A, Pellegrini N and Ricatto R 2016 Real-time performance of mechatronic PZT module using active vibration feedback controlSensors161577

[236] [236] He Y, Chen X A, Liu Z and Qin Y 2018 Piezoelectric self-sensing actuator for active vibration control of motorized spindle based on adaptive signal separationSmart Mater. Struct.27065011

[237] [237] Lu F, Liu Y X, Chen W S, Deng J, Li K, Zhang S J and Tian X Q 2022 Radial disturbance compensation device of cylindrical cantilever beam using embedded piezoelectric ceramics with bending modeMech. Syst. Signal Process.172109009

[238] [238] Ahmad M R, Nakajima M, Kojima M, Kojima S, Homma M and Fukuda T 2012 Nanofork for single cells adhesion measurement via ESEM-nanomanipulator systemIEEE Trans. Nanobiosci.1170–78

[239] [239] Das S, Carnicer-Lombarte A, Fawcett J W and Bora U 2016 Bio-inspired nano tools for neuroscienceProg. Neurobiol.1421–22

[240] [240] Du E, Cui H L and Zhu Z Q 2006 Review of nanomanipulators for nanomanufacturingInt. J. Nanomanuf.183–104

[241] [241] Shi C Y, Luu D K, Yang Q M, Liu J, Chen J, Ru C H, Xie S R, Luo J, Ge J and Sun Y 2016 Recent advances in nanorobotic manipulation inside scanning electron microscopesMicrosyst. Nanoeng.216024

[242] [242] Mekid S and Bashmal S 2019 Engineering manipulation at nanoscale: further functional specificationsJ. Eng. Des. Technol.17572–90

[243] [243] Fechner R, Muslija A and Kohl M 2017 A micro test platform forin-situmechanical and electrical characterization of nanostructured multiferroic materialsMicroelectron. Eng.17358–61

[244] [244] Petit T, Zhang L, Peyer K E, Kratochvil B E and Nelson B J 2012 Selective trapping and manipulation of microscale objects using mobile microvorticesNano Lett.12156–60

[245] [245] Zhang S Jet al2023 Piezo robotic hand for motion manipulation from micro to macroNat. Commun.14500

[246] [246] Li X, Cheah C C, Hu S Y and Sun D 2013 Dynamic trapping and manipulation of biological cells with optical tweezersAutomatica491614–25

[247] [247] Yu H P, Liu Y X, Deng J, Li J, Zhang S J, Chen W S and Zhao J 2022 Bioinspired multilegged piezoelectric robot: the design philosophy aiming at high-performance micromanipulationAdv. Intell. Syst.42100142

[248] [248] Bogue R 2015 Miniature and microrobots: a review of recent developmentsInd. Robot.4298–102

[249] [249] Palagi S and Fischer P 2018 Bioinspired microrobotsNat. Rev. Mater.3113–24

[250] [250] Schmidt C K, Medina-Snchez M, Edmondson R J and Schmidt O G 2020 Engineering microrobots for targeted cancer therapies from a medical perspectiveNat. Commun.115618

[251] [251] Dabbagh S R, Sarabi M R, Birtek M T, Seyfi S, Sitti M and Tasoglu S 2022 3D-printed microrobots from design to translationNat. Commun.135875

[252] [252] Fath A, Xia T and Li W 2022 Recent advances in the application of piezoelectric materials in microrobotic systemsMicromachines131422

[253] [253] Wang Y Y, Wang B, Zhang Y H, Wei L, Yu C, Wang Z K and Yang Z B 2022 T-phage inspired piezoelectric microrobotInt. J. Mech. Sci.231107596

[254] [254] Prez-Arancibia N O, Ma K Y, Galloway K C, Greenberg J D and Wood R J 2011 First controlled vertical flight of a biologically inspired microrobotBioinsp. Biomim.6036009

[255] [255] Baisch A T and Wood R J 2011Design and Fabrication of the Harvard Ambulatory Micro-robot Robotics Researched C Pradalier, R Siegwart and G Hirzinger (Springer) pp 715–30

[256] [256] Baisch A T, Heimlich C, Karpelson M and Wood R J 2011 HAMR3: an autonomous 1.7g ambulatory robotProc. 2011 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems(IEEE) pp 5073–9

[257] [257] Baisch A T, Ozcan O, Goldberg B, Ithier D and Wood R J 2014 High speed locomotion for a quadrupedal microrobotInt. J. Robot. Res.331063–82

[258] [258] Sahai R, Avadhanula S, Groff R, Steltz E, Wood R and Fearing R S 2006. Towards a 3G crawling robot through the integration of microrobot technologiesProc. 2006 IEEE Int. Conf. on Robotics and Automation(IEEE) pp 296–302

[259] [259] Wang C, Li H Z, Zhang Z Z, Yu P F, Yang L H, Du J L, Niu Y and Jiang J 2022 Review of bionic crawling micro-robotsJ. Intell. Robot. Syst.10556

[260] [260] Hoffman K L and Wood R J 2011 Myriapod-like ambulation of a segmented microrobotAuton. Robot.31103–14

[261] [261] Hoffman K L 2013Design and Locomotion Studies of A Miniature Centipede-Inspired Robot(Harvard University)

[262] [262] Rios S A, Fleming A J and Yong Y K 2017 Miniature resonant ambulatory robotIEEE Robot. Autom. Lett.2337–343

[263] [263] Wu Y Cet al2019 Insect-scale fast moving and ultrarobust soft robotSci. Robot.4eaax1594

[264] [264] Liu P K, Wen Z J and Sun L N 2009 An in-pipe micro robot actuated by piezoelectric bimorphsChin. Sci. Bull.542134–42

[265] [265] Aoyama H and Fuchiwaki O 2001 Flexible micro-processing by multiple microrobots in SEMProc. 2001 ICRA. IEEE Int. Conf. on Robotics and Automation(IEEE) pp 3429–34

[266] [266] Fuchiwaki O, Misaki D, Kanamori C and Aoyama H 2008 Development of the orthogonal microrobot for accurate microscopic operationsJ. Micro. Nano Mechatronics485–93

[267] [267] Yan S Z, Zhang F X, Qin Z and Wen S Z 2006 A 3-DOFs mobile robot driven by a piezoelectric actuatorSmart Mater. Struct.15N7–N13

[268] [268] Fuchiwaki O 2013 Insect-sized holonomic robots for precise, omnidirectional, and flexible microscopic processing: identification, design, development, and basic experimentsPrecis. Eng.3788–106

[269] [269] Liu Y X, Li J, Deng J, Zhang S J, Chen W S, Xie H and Zhao J 2021 Arthropod-metamerism-inspired resonant piezoelectric millirobotAdv. Intell. Syst.32100015

[270] [270] Li J, Deng J, Zhang S J and Liu Y X 2023 Development of a miniature quadrupedal piezoelectric robot combining fast speed and nano-resolutionInt. J. Mech. Sci.250108276

[271] [271] Deng J, Yang C L, Liu Y X, Zhang S J, Li J, Ma X F and Xie H 2023 Design and experiments of a small resonant inchworm piezoelectric robotSci. China Technol. Sci.66821–9

[272] [272] Fuchiwaki O and Aoyama H 2000 Flexible micro-processing by multiple miniature robots in SEM vacuum chamberProc. 2000 Int. Symp. on Micromechatronics and Human Science(IEEE) pp 145–50

[273] [273] Fuchiwaki O, Yamagiwa T, Omura S and Hara Y 2015In-siturepetitive calibration of microscopic probes maneuvered by holonomic inchworm robot for flexible microscopic operationsProc. 2015 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems(IEEE) pp 1467–72

[274] [274] Maillard T, Claeyssen F, LeLetty R, Sosnicki O, Pages A and Carazo A V 2009. Piezomechatronic-based systems in aircraft, space, and defense applicationsProc. SPIE733173310K

[275] [275] Jin H Net al2022 Review on piezoelectric actuators based on high-performance piezoelectric materialsIEEE Trans. Ultrason. Ferroelectr. Freq. Control693057–69

[276] [276] Stevenson T, Martin D G, Cowin P I, Blumfield A, Bell A J, Comyn T P and Weaver P M 2015 Piezoelectric materials for high temperature transducers and actuatorsJ. Mater. Sci., Mater. Electron.269256–67

[277] [277] Giurgiutiu V, Xu B L and Liu W P 2010 Development and testing of high-temperature piezoelectric wafer active sensors for extreme environmentsStruct. Health Monit.9513–25

[278] [278] Comyn T P, Cowin P I and Stevenson T 2021 High strength piezoelectric materials for extreme environmentsProc. 2021 IEEE Sensors(IEEE) pp 1–4

[279] [279] Allegranza C, Gaillard L, Le Letty R, Patti S, Scolamiero L and Toso M 2014 Actuators for space applications: state of the art and new technologiesProc. 14th Int. Conf. on New Actuators(ESA) pp 23–25

[280] [280] Shi H D, Shi W L, Zhang R, Zhai J Y, Chu J K and Dong S X 2017 A micromachined piezoelectric microgripper for manipulation of micro/nanomaterialsRev. Sci. Instrum.88065002

[281] [281] Kuang Y, Chew Z J, Dunville J, Sibson J and Zhu M L 2021 Strongly coupled piezoelectric energy harvesters: optimised design with over 100 mW power, high durability and robustness for self-powered condition monitoringEnergy Convers. Manage.237114129

[282] [282] Kim N Iet al2020 Piezoelectric pressure sensor based on flexible gallium nitride thin film for harsh-environment and high-temperature applicationsSens. ActuatorsA305111940

[283] [283] Jian Y P, Huang D Q, Liu J B and Min D 2019 High-precision tracking of piezoelectric actuator using iterative learning control and direct inverse compensation of hysteresisIEEE Trans. Ind. Electron.66368–77

[284] [284] Yu Y W, Zhang C, Wang Y F and Zhou M L 2022 Neural-network-based iterative learning control for hysteresis in a magnetic shape memory alloy actuatorIEEE/ASME Trans. Mechatronics27928–39

[285] [285] Qin S J and Cheng L 2021 A real-time tracking controller for piezoelectric actuators based on reinforcement learning and inverse compensationSustain. Cities Soc.69102822

[286] [286] Uralde J, Artetxe E, Barambones O, Calvo I, Fernndez-Bustamante P and Martin I 2023 Ultraprecise controller for piezoelectric actuators based on deep learning and model predictive controlSensors231690

[287] [287] Wong P K, Xu Q S, Vong C M and Wong H C 2012 Rate-dependent hysteresis modeling and control of a piezostage using online support vector machine and relevance vector machineIEEE Trans. Ind. Electron.591988–2001

[288] [288] Liu Y F, She J Y, Duan H Y and Qi N M 2021 Hybrid model based on Maxwell-slip model and relevance vector machineIEEE Trans. Ind. Electron.6810050–7

[289] [289] Tao Y D, Li H X and Zhu L M 2019 Rate-dependent hysteresis modeling and compensation of piezoelectric actuators using Gaussian processSens. ActuatorsA295357–65

[290] [290] Tao Y D, Li H X and Zhu L M 2020 Hysteresis modeling with frequency-separation-based Gaussian process and its application to sinusoidal scanning for fast imaging of atomic force microscopeSens. ActuatorsA311112070

[291] [291] Abdelkefi A 2016 Aeroelastic energy harvesting: a reviewInt. J. Eng. Sci.100112–35

Tools

Get Citation

Copy Citation Text

Yuan Zhongxiang, Zhou Shuliu, Hong Cailin, Xiao Ziyu, Zhang Zhengguang, Chen Xuedong, Zeng Lizhan, Wu Jiulin, Wang Yunlong, Li Xiaoqing. Piezo-actuated smart mechatronic systems for extreme scenarios[J]. International Journal of Extreme Manufacturing, 2025, 7(2): 22003

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category:

Received: Mar. 4, 2024

Accepted: May. 29, 2025

Published Online: May. 29, 2025

The Author Email:

DOI:10.1088/2631-7990/ad9366

Topics