Journal of Infrared and Millimeter Waves, Volume. 43, Issue 4, 541(2024)
Terahertz imaging super-resolution algorithm based on Hilbert spatial curve filling
[1] Salih E, Selçuk S. Terahertz Technology For Military Applications[J]. Journal of Management and Information Science, 4, 13-16(2015).
[2] Cheng Y Y, Qiao L B, Zhu D G et al. Passive polarimetric imaging of millimeter and terahertz waves for personnel security screening[J]. Optics letters, 46, 1233-1236(2021).
[3] Balega Y Y, Baryshev A M, Bubnov G M et al. Superconducting Receivers for Space, Balloon, and Ground-Based Sub-Terahertz Radio Telescopes[J]. Radiophysics and Quantum Electronics, 2, 1-22(2021).
[4] Xiong W H, Li L J, Ren J J et al. Terahertz Multiple Echoes Correction and Non-Destructive Testing Based on Improved Wavelet Multi-Scale Analysis[J]. Sensors, 22, 3477-3477(2022).
[5] Kiarash A. A method and system for enhancing the resolution of terahertz imaging[J]. Measurement, 138, 614-619(2019).
[6] Wang Y, Qi F B, Wang J K. Terahertz image super-resolution based on a complex convolutional neural network[J]. Optics letters, 46, 3123-3126(2021).
[7] Lu Y, Mao Q, Liu J B. Mathematical Degradation Model Learning for Terahertz Image Super-Resolution[J]. IEEE ACCESS, 9, 128988-128995(2021).
[8] Ruan H H, Tan Z Y, Chen L T et al. Efficient sub-pixel convolutional neural network for terahertz image super-resolution[J]. Optics letters, 47, 3115-3118(2022).
[9] Yang X W, Zhang D H, Wang Z M et al. Super-resolution reconstruction of terahertz images based on a deep-learning network with a residual channel attention mechanism[J]. Applied optics, 61, 3363-3370(2022).
[10] Shi W Z, Caballero J, Huszar F et al. Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network[C], 1874-1883(2016).
[11] Dosovitskiy A, Lucas B, Alexander K et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale[C], 1-22(2021).
[12] Yu Z, Hua H, Lei Z. Efficient Structure-Aware Image Smoothing by Local Extrema on Space-Filling Curve[J]. Computer Weekly News, 20, 1253-1265(2014).
[13] Castro R L, Andrade D, Fraguela B B. A Winograd Minimal Filtering Algorithm Implementation in CUDA[J]. Mathematics, 9, 2033-2033(2021).
[14] Jiwon K, Jung K L, Kyoung M L. Accurate Image Super-Resolution Using Very Deep Convolutional Networks[C], 1646-1654(2016).
[15] Christian L, Lucas T, Ferenc H et al. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network[C], 105-114(2016).
[16] Kirillov A, Mintun E, Ravi N et al. Segment Anything[C].
[17] Jia X, Zhu C, Li M et al. LLVIP: A Visible-infrared Paired Dataset for Low-light Vision[C], 3489-3497(2021).
[18] Tulin O, Muhammed T, Eylul A Y et al. Automated detection of COVID-19 cases using deep neural networks with X-ray images[J]. Computers in Biology and Medicine, 121(2020).
[19] Dong C, Loy C, He K et al. Image Super-Resolution Using Deep Convolutional Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 295-307(2016).
[20] He K, Zhang X, Ren S et al. Deep Residual Learning for Image Recognition[C], 770-778(2016).
Get Citation
Copy Citation Text
Mo-Xuan YANG, Yuan-Meng ZHAO, Hao-Xin LIU, Yi LIU, You WU, Cun-Lin ZHANG. Terahertz imaging super-resolution algorithm based on Hilbert spatial curve filling[J]. Journal of Infrared and Millimeter Waves, 2024, 43(4): 541
Category: Research Articles
Received: Oct. 14, 2023
Accepted: --
Published Online: Aug. 27, 2024
The Author Email: Yuan-Meng ZHAO (zhao.yuanmeng@cnu.edu.cn)